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Introduction

Introduction

This is the third book containing examples from the Theory of Complex Functions. The first topic
will be examples of elementary analytic functions, like polynomials, fractional functions, exponential
functions and the trigonometric and the hyperbolic functions. Then follow some examples of harmonic
functions.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
4th June 2008
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1 Some necessary theoretical results

We start with

Theorem 1.1 The fundamental theorem of Algebra. Every polynomial P (z) of degree n ≥ 1
has at least one complex root.

This theorem immediately implies the following theorem:

Theorem 1.2 If all roots of a polynomial are counted by multiplicity, then every polynomial P (z) of
degree n has exactly n complex roots.

Concerning the decomposition of fractional functions we have the following important special case:

Theorem 1.3 If the polynomial of the denominator (of degree m)

Q(z) = (z − a1) · · · (z − am)

has only simple roots, i.e. all aj, j = 1, . . . ,m are mutually different, and the polynomial of the
numerator P (z) has a degree which is smaller than m, then

P (z)
Q(z)

=
m∑

j=1

P (aj)
Q′ (aj)

· 1
z − aj

, z ∈ C \ {a1 , . . . , am} .

Some necessary theoretical results
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We should here also mention that the complex exponential function is defined by

exp z = ez := ex cos y + i ex sin y forz = x + i y ∈ C.

From this definition we derive the complex trigonometric and hyperbolic functions by

sin z :=
1
2i
{
eiz − e−iz

}
, cos z :=

1
2
{
eiz + e−iz

}
,

sinh z :=
1
2
{ez − e−z} , cosh z :=

1
2
{ez + e−z} ,

from which we furthermore derive

tan z :=
sin z

cos z
, cot z :=

cos z

sin z
,

tanh z :=
sinh z

cosh z
, coth z :=

cosh z

sinh z
,

in the sets where these functions are defined, i.e. outside the zeros of the denominator.

We see that these functions all agree with the well-known ones from the real analysis, when z = x ∈ R

is real. Furthermore, we have the derivatives

d

dz
ez = ez,

d

dz
sin z = cos z,

d

dz
cos z = − sin z,

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z,

d

dz
tan z =

1
cos2 z

,
d

dz
cot z = − 1

sin2 z
,

d

dz
tanh z =

1
cosh2 z

,
d

dz
coth z = − 1

sinh2 z
,

where these also are in agreement with the known real expressions, when z = x ∈ R er reel.

The fundamental relations also hold in the complex description,

cos2 z + sin2 z = 1, cosh2 z − sinh2 z = 1, for z ∈ C,

as well as the well-known rules of addition from the real are extended by just writing z instead of x:

sin (z + w) = sin z · cos w + cos z · sin w,

cos (z + w) = cos z · cos w − sin z · sin w,

sinh (z + w) = sinh z · coshw + cosh z · sinhw

cosh (z + w) = cosh z · coshw + sinh z · sinhw.

Some necessary theoretical results
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Furthermore, we have the transformation formulæ,

sin(iz) = i · sinh z, sinh(iz) = i · sin z,

cos(iz) = cosh z, cosh(iz) = cos z

tan(iz) = i · tanh z, tanh(iz) = i · tan z

cot(iz) = −i · coth z, coth(iz) = −i · cot z,

We write as usual z = x + it ∈ C. Then it follows easily from the above that,

sin z = sinx · cosh y + i cos x · sinh y,

cos z = cos x · cosh y − i sin x · sinh y,

sinh z = sinhx · cos y + i cosh x · sin y,

cosh z = cosh x · cos y + i sinhx · sin y.

We now mention a couple of results concerning harmonic functions.

Definition 1.1 Assume that Ω ⊆ R
2 is an open domain in the real plane. A function u ∈ C2(Ω) in

the two real variables x and y is said to be harmonic in Ω, if it satisfies the equation

Δu :=
∂2u

∂x2
+

∂2u

∂y2
= 0 for every (x, y) ∈ Ω.

The importance of the harmonic functions stems from the fact that the equation Δ = 0 occurs
frequently in the physical and technical applications. The connection with the Theory of Complex
Functions is given by the following theorem.

Theorem 1.4 Assume that f(z) = u(x, y) + i v(x, y) is analytic in an open domain Ω ⊆ C. If we
also consider Ω as a subset of the real plane R

2, then both the real part u(x, y) and the imaginary part
v(x, y) of the analytic function f(z) are harmonic in Ω.

Assume that both u(x, y) and v(x, y) are harmonic functions in the same domain Ω ⊆ R
2. If the pair

(u, v) furthermore fulfils Cauchy-Riemann’s equations, we call v an harmonic conjugated function of u.
It follows immediately that if (u, v) is a harmonic conjugated pair (notice the order of the functions),
then (−v, u) is also an harmonic conjugated pair.

Thus, harmonic conjugating is not a symmetric relation. The importance of an harmonic conjugated
pair (u, v) lies in the fact that under some very mild assumption the level curves

u(x, y) = c1, v(x, y) = c2,

are orthogonal to each other. This follows implicitly from

Theorem 1.5 Assume that (u, v) is an harmonic conjugated pair. Then f(z) = u(x, y) + i v(x, y) is
an analytic function in the same domain.

Some necessary theoretical results
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We now see that the missing condition for orthogonality above is that f ′(z) �= 0 at the point z =
x + i y ∼ (x, y) ∈ R

2 under consideration. At the same time this shows that it is often easier
to formulate a problem of harmonic functions by using analytic functions instead of the condition
Δu = 0. Thus it is important to be able to find an harmonic conjugated of a given harmonic function.
We have the following result:

Theorem 1.6 Assume that u(x, y) is harmonic in a simply connected open domain Ω ⊆ R
2 (i.e. a

domain without “holes”). Then all possible harmonic conjugated functions of u are given by the line
integral,

v(x, y) =
∫ z

z0

{
−∂u

∂y
dx +

∂u

dx
dy

}
+ C, where C ∈ R is arbitrary.

Here we integrate along any simple curve in Ω from the point z0 to z, thus by one’s own choice.

Since the harmonic functions are closely connected with the analytic functions, we may also expect a
mean value theorem. We start with

Theorem 1.7 The Maximum (minimum) principle for harmonic functions. Assume that
u(x, y) is harmonic and not a constant on an open domain Ω. Then u(x, y) has neither a maximum
nor a minimum in Ω.

Some necessary theoretical results
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Assume that u(x, y) is harmonic and not a constant, and that u(x, y) has a continuous extension to
all of the boundary of a bounded domain Ω. Then it follows by one of the main theorems from the
reel analysis that the maximum and the minimum (which do exist) necessarily must be attained at a
boundary point, i.e. in ∂Ω.

Theorem 1.8 The Mean Value Theorem for Harmonic Functions. The value of an harmonic
function u(x, y) in an open domain Ω in a point (x0, y0) ∼ z0 ∈ Ω is equal to the mean value of the
function over any circle of centrum z0 and radius r > 0, provided that the closed disc B [z0, r] ⊂ Ω is
contained in Ω. We have explicitly for any such radius r > 0 that

u (x0, y0) = u (z0) =
1
2π

∫ 2π

0

u
(
z0 + r eiθ

)
dθ,

where we as usual freely changes between the notations z0 = x0 + i y0 and (x0, y0).

In 1820, Poisson derived a solution formula for the boundary value problem for the harmonic equation
on a disc:

Theorem 1.9 Poisson’s Integral Formula. Assume that f(z) = u + iv is analytic in an open
domain Ω, which contains the closed disc B[0, R], and let z0 = x0 + i y0 = r eiθ, 0 ≤ r < R be any
fixed point in the interior of this disc. Then

u (z0) =
1
2π

∫ 2π

0

R2 − r2

R2 + r2 − 2Rr cos(θ − t)
u
(
R eit

)
dt,

and analogously,

v (z0) =
1
2π

∫ 2π

0

R2 − r2

R2 + r2 − 2Rr cos(θ − t)
v
(
R eit

)
dt.

Thus, u(x, y) and v(x, y) can be reconstructed from their values on the circle, which is given by the
parametric description R eit t ∈ [0, 2π].

If u(x, y) is harmonic in Ω, then all harmonic conjugated of u(x, y) are given by

v (z0) =
1
2π

∫ 2π

0

2Rr · sin(θ − t)
R2 + r2 − 2Rr · cos(θ − t)

u
(
R eit

)
dt + v(0),

and we get

f (z0) =
1
2π

∫ 2π

0

z + z0

z − z0
u(z) dt + i v(0), where z = R eit, t ∈ [0, 2π].

This formal result seems confused, so choose Ω = B(0, 1) as the open unit disc and assume that the
boundary values function h(z) is continuous on the boundary |z| = 1. Then it follows by a Fourier
series expansion, that we have on the boundary,

h
(
eit
) ∼ 1

2
a0 +

+∞∑
n=1

{an cos nt + bn sin nt} ,

where

an =
1
π

∫ 2π

0

h
(
eit
)
cos nt dt, and bn =

1
π

∫ 2π

0

h
(
eit
)
sinnt dt.

Then we obtain the following simple result,

Some necessary theoretical results
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Theorem 1.10 Assume that h(z) is continuous on |z| = 1 and that h(z) has the Fourier series
expansion

h
(
eit
) ∼ 1

2
a0 +

+∞∑
n=1

{an cos nt + bn sin nt} .

Then the unique solution of the boundary value problem⎧⎨
⎩

Δu = 0 for x2 + y2 < 1,

u(x, y) = h(x, y) for x2 + y2 = 1,

is given by

u
(
r eiθ

)
=

1
2

a0 +
+∞∑
n=1

r2 {an cos nθ + bn sinnθ} , 0 ≤ r < 1,

so we just add the factor rn to the n-th term in the Fourier expansion of the boundary value function
in order to obtain the solution.

Some necessary theoretical results
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2 Polynomials

Example 2.1 Suppose that all zeros of a polynomial Pn(z) of degree n > 1 lie in the open left half
plane. Prove that then all zeros of P ′

n(z) are also lying in the open left half plane.

Hint: Apply the factor expansion of Pn(z) and then consider the logarithmic derivative
P ′

n(z)
Pn(z)

. Prove

that we obtain a conflict if we assume that P ′
n (z0) = 0 for some z0 where Re (z0) ≥ 0.

We call polynomials of this type Hurwitz polynomials.

Assume that

Pn(z) = A (z − z1) (z − z2) · · · (z − zn) ,

where Re (zj) < 0 for j = 1, 2, . . . , n, and where we allow some of the zj to be identical. Obviously,
we may assume that A = 1. Then

P ′
n(z) = (z − z2) · (z − zn) + (z − zn) + (z − z1) (z − z3) · · · (z − zn) + · · ·+ (z − z1) · · · (z − zn−1) ,

and thus

P ′
n(z)

Pn(z)
=

1
z − z1

+
1

z − z2
+ · · · + 1

z − zn
.

If we put zj = xj + iyj , j = 1, . . . , n, and analogously z = x + iy, then

Re
{

P ′
n(z)

Pn(z)

}
=

x − x1

(x − x1)
2 + (y − y1)

2 + · · · + x − xn

(x − xn)2 + (y − yn)2
.

According to the assumption, −xj > 0 for j = 1, . . . , n. Hence it follows that

Re
{

P ′
n(z)

Pn(z)

}
> 0, if x = Re(z) ≥ 0,

thus P ′
n(z =�= 0 for x = Re(z) ≥ 0. The claim is proved.

Remark 2.1 By elaborating further on the argument above it is possible to prove that the zeros of
P ′

n(z) lie in the convex hull of the zeros of Pn(z). ♦

Polynomials
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3 Fractional functions

Example 3.1 A fixpoint of the fractional function

f(z) =
az + b

cz + d
, where

∣∣∣∣ a b
c d

∣∣∣∣ �= 0, a, b, c, d ∈ C

is a point z ∈ C, for which f(z) = z.
If c = 0, we consider ∞ as a fixpoint.
Prove that if f(z) is not the identity function, then there are at most two fixpoints for f(z).

Let c �= 0 and assume that z is a fixpoint,

z =
az + b

cz + d
.

This equation is equivalent to the follows equation of second degree,

cz2 + (d − a)z + b = 0.

According to the Fundamental Theorem of Algebra this equation has two roots, so the function has
two fixpoints.
If the roots are identical, i.e. if (d−a)2 = 4bc, one usually says that the equation has only one fixpoint.

If c = 0 and T �= I, then ∞ is a fixpoint. If z ∈ C is another fixpoint, then

z =
a

d
z +

b

d
,

because the condition∣∣∣∣ a b
c d

∣∣∣∣
together with c = 0 assures that d �= 0. Hence it follows that if a �= d, then we have precisely two
fixpoints, where ∞ is one of them. If a = d and b = 0, then T = I, and if a = d and b �= 0, then ∞ is
the only fixpoint.

Example 3.2 Decompose inside C:

(a)
10

(z + 2) (z2 + 1)
, (b)

z2 − 1
(z + 2)(z + 3)

, (c)
24

z2(z − 1)(z + 2)
.

(a) Here,

10
(z + 2) (z2 + 1)

=
10

(z + 2)(z − i)(z + i)
=

1
z + 2

· 10
5

+
1

z − i
· 10
(i + 2)2i

+
1

z + i
· 10
(2 − i)(−2i)

=
2

z + 2
− 1 + 2i

z − i
− 1 − 2i

z + i
.

Fractional functions
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(b) First perform a division

z2 − 1
(z + 2)(z + 3)

= 1 +
z1 − 1 − (z + 2)(z + 3)

(z + 2)(z + 3)
= 1 +

1
z + 2

· 4 − 1
1

+
1

z + 3
· 9 − 1

(−1)

= 1 +
3

z + 2
− 8

z + 3
.

(c) Here we shall be aware of the factor z2 in the denominator:

24
z2(z − 1)(z + 2)

=
1
z2

· 24
−2

+
A

z
+

1
z − 1

· 24
1 · 3 +

1
z + 2

· 24
4(−3)

= −12
z2

+
A

z
+

8
z − 1

− 2
z + 2

.

Now

24
z2(z − 1)(z + 2)

+
12
z2

=
12

z2(z − 1)(z + 2)
{
2 + z2 + z − 2

}
=

12(z + 1)
z(z − 1)(z + 2)

=
A

z
+

8
z − 1

− 2
z + 2

,

by a rearrangement and a reduction of the above. We therefore conclude by the standard method
that

A =
12(0 + 1)
−1 · 2 = −6,

hence by insertion,

24
z2(z − 1)(z + 2)

= −12
z2

− 6
z

+
8

z − 1
− 2

z + 2
.

Alternatively one may find A by a formula, which is derived in a later book, so we only mention
the easy computations. Since n = 2 and j = 1, we get

A =
1

(2 − 1)!
lim
z→0

d2−1

dz2−1

{
24

(z − 1)(z + 2)

}
= lim

z→0

d

dz

{
8

z − 1
− 8

z + 2

}

= lim
z→0

{
− 8

(z − 1)2
+

8
(z + 2)2

}
= −8 +

8
4

= −6,

and then as before by insertion,

24
z2(z − 1)(z + 2)

= −12
z2

− 6
z

+
8

z − 1
− 2

z + 2
.

Fractional functions
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Example 3.3 Decompose inside C:

(a)
z

z4 + 1
, (b)

z3 + 5
(z4 − 1) (z + 1)

, (c)
z3 − 3z + 1

(z − i)2
.

(a) The equation z4 = −1 has the solutions

z =
1√
2

(±1 ± i),

all four possible combinations of the signs. It follows that every zero zj is of order 1, hence the

coefficient of
1

z − zj
is given by

lim
z→zj

z · z − zj

z4 + 1
= zj lim

z→zj

1(
z4 + 1

)− (z4
j + 1

)
z − zj

=
zj

4z3
j

=
z2
j

4z4
j

= −z2
j

4
.

Then

z

z4 + 1
=

i

4
· 1

z − −1 + i√
2

+
i

4
· 1

z − 1 − i√
2

− i

4
· 1

z − 1 + i√
2

− i

4
· 1

z − −1 − i√
2

.

Fractional functions
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(b) Since(
z4 − 1

)
(z + 1) =

(
z2 − 1

) (
z2 + 1

)
(z + 1) = (z + 1)2(z − 1)(z − i)(z + i),

we get by the standard method,

z3 + 5
(z4 − 1) (z + 1)

=
z3 + 5

(z + 1)2(z − 1)(z − i)(z + i)

=
1

(z + 1)2
· −1 + 5
(−2) · 2 +

A

z + 1
+

1
z − 1

· 1 + 5
22 · 2

+
1

z − i
· 5 − i

(i + 1)2(i − 1) · 2i +
1

z + i
· 5 + i

(1 − i)2(−i − 1)(−2i)

= − 1
(z + 1)2

+
A

z + 1
+

3
4
· 1
z − 1

+
5 − i

4(1 − i)
· 1
z − i

+
5 + i

4(1 + i)
· 1
z + i

.

From

z3 + 5
(z4 − 1) (z + 1)

+
1

(z + 1)2
=

1
(z4 − 1) (z + 1)

{
z3 + 5 + z3 − z2 + z − 1

}
=

2z2 − 3z + 4
z4 − 1

=
A

z + 1
+ · · · ,

follows by the standard method,

A =
2 + 3 + 4
−2 · 2 = −9

4
,

hence by insertion and reduction,

z3+5
(z4−1) (z+1)

= − 1
(z+1)2

− 9
4

1
z+1

+
3
4

1
z−1

+
3+2i

4
1

z−i
+

3−2i
4

1
z+i

.

Alternatively it follows that

z3 + 5
(z4 − 1) (z + 1)

=
z3 + 5

(z + 1)2(z − 1) (z2 + 1)
.

By the standard procedure we obtain the coefficient

−1 + 5
−2 · 2 = −1

of
1

(z + 1)2
.

The remaining terms are then obtained by a decomposition of

z3+5
(z4−1) (z+1)

− −1
(z+1)2

=
1

(z4−1) (z+1)
{
z3+5+z3−z2+z−1

}

=
2z3 − z2 + z + 4
(z4 − 1) (z + 1)

=
2z2 − 3z + 4

z4 − 1
.

Fractional functions
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Every pole z0 is simple and fulfils z4
0 = 1, so the coefficient of

1
z − z0

becomes

2z2
0−3z0+4

4z3
0

=
2z3

0−3z2
0 +4z0

4z4
0

=
1
4
{
2z3

0−3z2
0 +4z0

}
.

Finally, by insertion of z0 = −1, 1, i and −i we get

z3+5
(z4−1) (z+1)

= − 1
(z+1)2

− 9
4

1
z+1

+
3
4

1
z − 1

+
3+2i

4
1

z−i
+

3−2i
4

1
z+i

.

Alternatively we may exploit that since z0 ∈ {1, i, −i} is a simple pole (and in particular

z4
0 = 1), then the coefficient of

1
z − z0

is given in the decomposition by

lim
z→z0

z3 + 5
4x3(z + 1) + (z4 − 1)

=
z3
0 + 5

4z3
0 (z0 + 1)

=
1
4
· z4

0 + 5z0

z4
0 · (z0 + 1)

=
1
4
· 5z0 + 1

z0 + 1
.

If z0 = 1, then we get the coefficient

1
4
· 5 + 1
1 + 1

=
3
4
.

If z0 = i, then we get the coefficient

1
4
· 1+5i

1+i
=

1
4
· 1+5i

1+i
· 1−i

1−i
=

1
4
· 1+5+i(5−1)

12 + 12
=

3 + 2i
2

.

If z0 = −i, then we get by complex conjugation that the coefficient is
3 − 2i

2
, because every

coefficient of the fractional function is real.
By the standard method we see that the coefficient of

1
(z + 1)2

is

lim
z→−1

(z + 1)2 · z3 + 5
(z1 − 1) (z2 + 1) (z + 1)

= lim
z→−1

z3 + 5
(z − 1) (z2 + 1)

=
−1 + 5
−2 · 2 = −1.

Finally, the coefficient of
1

z + 1
is also given by some residue formula

1
(2 − 1)!

lim
z→−1

d2−1

dz2−1

{
(z + 1)2

(
z3 + 5

)
(z2 − 1) (z2 + 1) (z + 1)

}
= lim

z→−1

d

dz

{
z3 + 5

(z − 1) (z2 + 1)

}

= lim
z→−1

{
3z2

(z − 1) (z2 + 1)
−

(
z3 + 5

) · 1
(z − 1)2 (z2 + 1)

−
(
z3 + 5

)
2z

(z − 1) (z2 + 1)2

}

=
3(−1)2

(−2) · 2 − −1 + 5
4 · 2 − (−1 + 5) · (−2)

(−2) · 4 = −3
4
− 4

8
− 4

4

= −3 + 2 + 4
4

= −9
4
,

and we have as before,

z3+5
(z4−1) (z+1)

= − 1
(z+1)2

− 9
4

1
z+1

+
3
4

1
z − 1

+
3+2i

4
1

z−i
+

3−2i
4

1
z+i

.
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(c) Since the degree of the numerator is bigger than the degree of the denominator we must first
perform a division. Since

(z − i)2 = z2 − 2iz − 1,

we get by the decomposition that

z3−3z+1
(z−i)2

= z + 2i +
−6z+(1+2i)

(z−i)2
= z + 2i − 6

z−i
+

1−4i
(z−i)2

.

Alternatively,

z3 − 3z + 1
(z − i)2

= z + 2i +
A

(z − i)2
+

B

z − i
,

where we in finding A and B may use the denominator z3−3z+1 instead of −6z+(1+2i) (why?),
by which the computations become smoother,

A lim
z→i

{
z3−3z+1

}
= i3−3i+1 = −i− 3i+1 = 1 − 4i.

According to some residue formula where n = 2 and j = 1 we get

B = lim
z→i

d

dz

{
z3 − 3z + 1

}
= lim

z→i

{
3z2 − 3

}
= −6,

and hence by insertion

z3 − 3z + 1
(z − i)2

= z + 2i +
1 − 4i

(z − i)2
− 6

z − i
.

Example 3.4 Decompose inside C:

(a)
z4 + 1

z (z2 + 1)
, (b)

z4 + 1
z (z2 − 1)

, (c)
z1 − 1
z2 + 1

.

(a) By a direct computation,

z4 + 1
z (z2 + 1)

=
z4 + z2 − z2 + 1

z (z2 + 1)
= z +

−z2 + 1
z(z − i)(z + i)

= z +
1
1
· 1
z

+
1 + 1
i · 2i · 1

z − i
+

1 + 1
−i(−2i)

· 1
z + i

= z +
1
z
− 1

z − i
− 1

z + i
.

(b) In this case we get analogously,

z4 + 1
z (z2 − 1)

=
z4 − z2 + z2 + 1

z (z2 − 1)
= z +

z1 + 1
z(z − 1)(z + 1)

= z − 1
z

+
1

z − 1
+

1
z + 1

.
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(c) Here is

z2 − 1
z2 + 1

= 1 +
−2

(z − i)(z + i)
= 1 +

−2
2i

· 1
z − i

+
−2
−2i

· 1
z + i

= 1 +
i

z − i
− i

z + i
.

Example 3.5 Decompose inside C:

(a)
2z + 1

z (z2 + 1)
, (b)

z3 + i

z2 − 3z + 2
, (c)

3z3 + 2
(z − 1) (z2 + 9)

.

(a) By the standard procedure:,

2z + 1
z (z2 + 1)

=
2z + 1

z(z − i)(z + i)
=

1
z

+
2i + 1
i · 2i · 1

z − i
+

−2i + 1
(−i)(−2i)

· 1
z + i

=
1
z
− 1 + 2i

2(z − i)
− 1 − 2i

2(z + i)
.
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(b) The degree of the numerator is bigger than the degree of the dominator, so we first perform a
division,

z3 + i

z2 − 3z + 2
= z + 3 +

7z − 6 + i

(z − 1)(z − 2)
= z + 3 +

7 − 6 + i

1 − 2
· 1
z − 1

+
14 − 6 + i

2 − 1
· 1
z − 2

= z + 3 − 1 + i

z − 1
+

8 + i

z − 2
.

(c) Since we by the standard procedure always obtain the singular part (though not the additional
polynomial) we can put ±3i into 3z3 + 2 instead of into the remainder 3z2 − 27z + 29 from the
division. Then

3z3 + 2
(z − 1) (z2 + 9)

= 3 +
3z2 − 27z + 29

(z − 1)(z − 3i)(z + 3i)

= 3 +
5
10

· 1
z − 1

+
2 − 81i

(3i − 1)6i
· 1
z − 3i

+
2 + 81i

(−3i − 1)(−6i)
· 1
z + 3i

= 3 +
1
2

1
z−1

+
1
6

(2−81i)(−3+i)
(−3−i)(−3+i)

1
z−3i

+
1
6

(2+81i)(−3−i)
(−3+i)(−3+i)(−3−i)

1
z+3i

= 3 +
1
2

1
z−1

+
1
60

(−6+81+i{243+2}) 1
z−3i

+
1
60

(−6+81+i{243+2}) 1
z+3i

= 3 +
1
2

1
z−1

+
75+245i

60
1

z−3i
+

75−245i
60

1
z+3i

= 3 +
1
2

1
z−1

+
15+49i

12
1

z−3i
+

15−49i
12

1
z+3i

.

Example 3.6 Decompose partly inside R and partly inside C:

(a)
z3

(z − 1) (z4 + 1)
, (b)

(
z3 − 1

)
(z + 2)

(z4 − 1)2
, (c)

1
(z2 − 1) (z + 2)

.

Since the real decomposition can be derived from the complex decomposition, and since a direct
computation of the real decomposition is rather difficult, we shall here only give the complex variant.

(a) the zeros of the denominator are

1,
1√
2

(2 + i),
1√
2

(1 − i),
1√
2

(−1 + i),
1√
2

(−1 − i)

and they are all simple. Then the coefficient of
1

z − 1
is given by

a0 = lim
z→1

z3

z4 + 1
=

1
2
,

and the coefficient of
1

z − zj
, where z4

j = −1, is given by

aj = lim
z→zj

(z − zj) z3

(z − 1) (z4 + 1)
=

z3
j

zj − 1
· 1

limz→zj

z4 + 1
z − zj

=
z3
j

zj − 1
· 1
4z3

j

=
1
4
· 1
zj − 1

.

Hence,
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1) if z1 =
1 + i√

2
, then

a1 =
1
4
· 1

1 + i√
2

− 1
=

√
2

4
· 1
(1 −√

2) + i
· (1 −√

2) − i

(1 −√
2) − i

=
√

2
4

· 1 −√
2 − i

(1 −√
2)2 + 1

=
√

2
4

· 1 −√
2 − i

1 − 2
√

2 + 2 + 1

=
√

2
8

· 1 −√
2 − i

2 −√
2

=
√

2
8

· 1 −√
2 − i

2 −√
2

· 2 +
√

2
2 +

√
2

=
√

2
8

· 1
2
{2 − 2

√
2 +

√
2 − 2 − i

√
2(1 +

√
2)}

= −1
8
− i

1 +
√

2
8

;

2) if z2 =
−1 + i√

2
, then

a2 =
1
4
· 1
−1 − i√

2
− 1

=
√

2
4

· 1
(−1 −√

2) + i
· (−1 −√

2) − i

(−1 −√
2) − i

=
√

2
4

· −1 −√
2 − i

(1 +
√

2)2 + 1
=

√
2

4
· −1 −√

2 − i

1 + 2
√

2 + 2 + 1

=
√

2
8

· −1 −√
2 − i

2 +
√

2
=

√
2

8
· −1 −√

2 − i

2 +
√

2
· 2 +

√
2

2 +
√

2

=
√

2
8

· 1
2
−2 − 2

√
2 − 2i

1 +
√

2

= −1
8
− i

√
2 − 1
8

;

3) if z3 =
−1 − i√

2
= z2, then

a3 = a2 = −1
8

+ i

√
2 − 1
8

;

4) if z4 =
1 − i√

2
= z1, then

a4 = a1 = −1
8

+ i

√
2 + 1
8

.

Thus the complex decomposition is given by

z3

(z−1) (z4+1)
=

1
2

1
z−1

− 1+(
√

2+1)i
8

· 1

z − 1+i√
2

− 1+(
√

2−1)i
8

· 1

z − −1+i√
2

−1−(
√

2+1)i
8

· 1

z − 1−i√
2

− 1−(
√

2−1)i
8

· 1

z−−1−i√
2

.
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Real decomposition. Since

a+ib

z−(c+id)
+

a−ib

z−(c−id)
=

(a+ib)(z−(c−id))+(a−ib)(z−(c+id))
(z−c)2+d2

=
2az − 2ac − 2bd
(z − c)2 + d2

,

we get

−1 + (
√

2 + 1)i
8

· 1

z − 1 + i√
2

− 1 − (
√

2 + 1)i
8

· 1

z − 1 − i√
2

= −1
8
·
2z − 2 · 1√

2
− 2(

√
2 + 1)

1√
2(

z − 1√
2

)2

+
1
2

= −1
8
· 2z −√

2 −√
2(
√

2 + 1)
z2 −√

2 z + 1

= −1
8
· 2z − 2 − 2

√
2

z2 −√
2 z + 1

= −1
4
· z − 1 −√

2
z2 −√

2 z + 1
,

and analogously,

−1 + (
√

2 − 1)i
8

· 1

z − −1 + i√
2

− 1 + (
√

2 − 1)i
8

· 1

z − −1 − i√
2

= −1
4
· z +

√
2 − 1

z2 +
√

2 z + 1
,

so we conclude that the real decomposition is

z3

(z−1) (z4+1)
=

1
2
· 1
z−1

− 1
4

z−1−√
2

z2−√
2 z+1

− 1
4

z+
√

2−1
z2+

√
2 z+1

.

(b) This is the most difficult decomposition in this example. Notice that even if z − 1 is a divisor
in both the numerator and the denominator, it will be most convenient not to remove this factor.
We first get(

z3 − 1
)
(z + 2)

(z4 − 1)2
=

z4 + 2z3 − z − 2
(z4 − 1)2

=
1

z4 − 1
+

2z3 − z − 1
(z4 − 1)2

.

Then we use a small trick, by using that

1
z4 − 1

=
1

(z2 − 1) (z2 + 1)
=

1
2
· 1
z2 − 1

− 1
2
· 1
z2 + 1

.

Hence by a squaring,

1
(z4 − 1)2

=
1
4
· 1
(z2 − 1)2

+
1
4
· 1
(z2 + 1)2

− 1
2
· 1
z4 − 1

=
1
4

{
1

(z2 − 1)2
+

1
(z2 + 1)2

− 1
z2 − 1

+
1

z2 + 1

}
,
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which by insertion gives

(
z3−1

)
(z+2)

(z4−1)2
=

1
2

1
z2−1

− 1
2

1
z2 + 1

+
1
4

{
2z3−z−1
(z2−1)2

+
2z3−z−1
(z2+1)2

− 2z3−z−1
z2−1

+
2z3−z−1

z2+1

}

=
1
2

1
z2−1

− 1
2

1
z2+1

+
1
4

{
2z
(
z2−1

)
+z−1

(z2−1)2
+

2z
(
z2+1

)−3z−1

(z2+1)2

−2z
(
z2−1

)
+z−1

z2−1
+

2z
(
z2+1

)−3z−1
z2+1

}

=
1
2

1
z2−1

− 1
2

1
z2+1

+
1
4

{
2z

z2−1
+

z−1
(z2−1)2

+
2z

z2+1
− 3z+1

(z2+1)2
− 2z

− z−1
z2−1

+ 2z − 3z+1
z2+1

}

=
1
2

1
z2−1

− 1
2

1
z2+1

+
1
4

{
z+1
z2−1

+
z−1

(z2−1)2
− z+1

z2+1
− 3z+1

(z2+1)2

}

=
1
2

{
1
2

1
z − 1

− 1
2

1
z + 1

)
− 1

4
z + 3
z2 + 1

+
1
4

1
z − 1

+
1
4
· 1
(z − 1)(z + 1)2

− 1
4
· 3z + 1
(z2 + 1)2

=
1
2

1
z−1

− 1
4

1
z+1

+
1
4

1
(z−1)(z+1)2

− 1
4

z+3
z2+1

− 1
4

3z+1
(z2+1)2

.

Now,

1
4
· 1
(z − 1)(z + 1)2

=
1
16

· 1
z − 1

− 1
8
· 1
(z + 1)2

+
A

z + 1
,

where

A

z + 1
=

1
16

· 1
(z − 1)(z + 1)2

{
4 − (z + 1)2 + 2(z − 1)

}
=

1
16

· 1
(z − 1)(z + 1)2

{−z2 − 2z + 2z + 4 − 1 − 2
}

=
1
16

· 1
(z2 − 1) (z + 1)

{− (z2 − 1
)}

= − 1
16

· 1
z + 1

,
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which gives by insertion,

(
z3−1

)
(z+2)

(z4−1)2
=

(
1
2

+
1
16

)
1

z − 1
− 5

16
1

z+1
− 1

8
1

(z+1)2
− 1

4
z+3
z2+1

− 1
4

3z+1
(z2+1)2

=
9
16

1
z−1

− 5
16

1
z+1

− 1
8

1
(z+1)2

− 1
4

z+3
z2+1

− 1
4

3z+1
(z2+1)2

.

Thus we have found the real decomposition.

Complex decomposition. Since

−1
4
· z + 3
z2 + 1

− 1
4
· 3z + 1
(z2 + 1)2

= −1
4
· (z + 3)

(
z2 + 1

)
+ (3z + 1)

(z2 + 1)2

= −1
4
· z3 + 3z2 + z + 3 + 3z + 1

(z2 + 1)2

= −1
4
· z3 + 3z2 + 4z + 4

(z − i)2(z + i)2

is the only term with complex roots, it is by the complex decomposition sufficient to decompose

z3 + 3z2 + 4z + 4
(z − i)2(z + i)2

.
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It is seen by the standard procedure that the decomposition must contain

i3 + 3i2 + 4i + 4
(2i)2

· 1
(z − i)3

=
(−i)3 + 3(−i)2 + 4(−i) + 4

(−2i)2
· 1
(z + i)2

= −1
4

(1 + 3i)
1

(z − i)2
− 1

4
(1 − 3i)

1
(z + i)2

.

It follows by a small computation that this expression is equal to

−1
4

1
2
(
z2 + 1

)2 {
(1 + 3i)(z + i) + (1 − 3i)(z − i)2

}
= −1

4
1

(z2 + 1)2
· 2Re

{
(1 + 3i)(z + i)2

}
= −1

2
1

(z2 + 1)2
Re
{
(1 + 3i)

(
z2 + 2iz − 1

)}
= −1

2
1

(z2 + 1)2
{
z2 − 6z − 1

}
,

thus the remainder term is

z3 + 3z2 + 4z + 4
(z2 + 1)2

+
1
2
· 1
(z2 + 1)2

{
z2 − 6z − 1

}
=

1
2
· 1
(z2 + 1)2

{
2z3 + 6z2 + 8z + 8 + z2 − 6z − 1

}
=

1
2

1
(z2 + 1)2

{
2z3 + 7z2 + 2z + 7

}
=

2z + 7
2 (z2 + 1)

=
2z + 7

2(z − i)(z + i)

=
7 + 2i
2(2i)

· 1
z − i

+
7 − 2i
2(−2i)

· 1
z + i

=
7 + 2i

4i
· 1
z − i

+
7 − 2i
−4i

· 1
z + i

=
2 − 7i

4
· 1
z − i

+
2 + 7i

4
· 1
z + i

.

By insertion of these expression we get

z3 + 3z2 + 4z + 4
(z − i)2(z + i)2

=
2 − 7i

4
· 1
z − i

+
2 + 7i

4
· 1
z + i

− 1 + 3i
4

· 1
(z − i)2

− 1 − 3i
4

· 1
(z + i)2

,

and the complex decomposition becomes(
z3 − 1

)
(z + 2)

(z4 − 1)2
=

9
16

1
z − 1

− 5
16

1
z + 1

− 1
8

1
(z + 1)2

−2 − 7i
16

1
z − i

− 2 + 7i
16

1
z + i

+
1 + 3i

16
1

(z − i)2
+

1 − 3i
16

1
(z + i)2

.

Alternatively one may use that z = 1 is a simple pole, and that z = i, −1, −i are double poles,
and that we can write(

z3 − 1
)
(z + 2)

(z4 − 1)2
=

(z − 1)
(
z2 + 1 + 1

)
(z + 2)

(z − 1)2(z − i)2(z + 1)2(z + i)2
=

(
z2 + z + 1

)
(z + 2)

(z − 1)(z + 1)2 (z2 + 1)2

=

(
z3 − 1

)
(z + 2)

(z − 1)2(z + 1)2 (z2 + 1)2
=

(
z3 − 1

)
(z + 2)

(z2 − 1)2 (z − i)2(z + i)2
,
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where we in the following always shall use that expression which is the most convenient on in a
given situation.

The coefficient of
1

z − 1
is found by the standard procedure:

lim
z→1

(
z2 + z + 1

)
(z + 1)

(z2 + 1)2 (z + 1)2
=

3 · 3
22 · 22

=
9
16

.

This is also the case of the coefficient of
1

(z + 1)2
:

lim
z→−1

(
z2 + z + 1

)
(z + 2)

(z − 1) (z2 + 1)2
=

(1 − 1 + 1)(−1 + 2)
(−2)(1 + 1)2

=
1 · 1

(−2) · 22
= −1

8
.

We find the coefficient of
1

z + 1
by using a residue formula for n = 2 and j = 1,

lim
z→−1

d

dz

{ (
z3 − 1

)
(z + 2)

(z − 1)2 (z2 + 1)2

}

= lim
z→−1

{
3z2(z+2)+

(
z3−1

) · 1
(z−1)2 (z2+1)2

− 2

(
z3−1

)
(z+2)

(z−1)3 (z2+1)2
− 2

(
z3−1

)
(z+2)2z

(z−1)2 (z2+1)3

}

=
3 · 1 · 1 + (−2)

22 · 22
− 2

(−2) · 1
(−2)3 · 22

− 2
(−2) · 1 · (−2)

(−2)223

=
3 − 2
16

− 2
16

− 4
16

= − 5
16

.

The coefficient of
1

(z − i)2
can also be found by the standard procedure,

lim
z→i

(
z3−1

)
(z+2)

(z2−1)2 (z+i)2
=

(−i−1)(i+2)
(−1−1)2(2i)2

=
−2+1+i(−1−2)

4 · (−4)
=

1+3i
16

.

The coefficient of
1

z − i
is obtained by means of a residue formula, where n = 2 and j = 1:

lim
z→i

d

dz

{ (
z3 − 1

)
(z + 2)

(z2 − 1)2 (z + i)2

}

= lim
z→i

{
3z2(z+2)+

(
z3−1

)
(z2)2 (z+i)2

− 2

(
z3−1

)
(z+2)2z

(z2−1)3 (z+i)2
− 2

(
z3−1

)
(z+2)

(z2−1)2 (z+i)3

}

=
3(−1)(2+i)+(−i−1)

(−2)2(2i)2
− 2

−i−1)(i+2)2i
(−2)3(2i)2

− 2
(−i−1)(i+2)
(−2)2(2i)3

=
6+3i+1+i

16
+

2 · 2i(1+i)(2+i)
(−8)(−4)

+ 2
(1+i)(2+i)

4(−8i)

=
7+4i
16

+
2i(1+i)(2+i)

16
+

i(1+i)(2+i)
16

=
1
16

{7+4i+3i(2−1+3i)} =
1
16

{7+4i+3i−9} =
−2+7i

16
.
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The fractional function(
z3 − 1

)
(z + 2)

(z4 − 1)2

has real coefficients, so the remaining two coefficients of
1

(z + i)2
and

1
z + i

respectively, are ob-

tained by complex conjugations, so summing up we get as before,

(
z3 − 1

)
(z + 2)

(z4 − 1)2
=

9
16

1
z − 1

− 5
16

1
z + 1

− 1
8

1
(z + 1)2

−2 − 7i
16

1
z − i

− 2 + 7i
16

1
z + i

+
1 + 3i

16
1

(z − i)2
+

1 − 3i
16

1
(z + i)2

.

(c) It follows directly by the standard procedure that

1
(z2 − 1) (z + 2)

=
1

(z − 1)(z + 2)(z + 1)
=

1
6

1
z − 1

− 1
2

1
z + 1

+
1
3

1
z + 2

,

and this is at the same time both the real and the complex decomposition.

Fractional functions
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time that I am beginning to be taken seriously and 
that my contribution is appreciated.

Trust and responsibility  

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/364493/27


Download free books at BookBooN.com

Complex Functions Examples c-3

 

28  

Example 3.7 Put

αk = exp
(

2iπk

n

)
, k = 0, 1, . . . , n − 1.

Prove that

n

zn − 1
=

n−1∑
k=0

αk

z − αk
=

α0

z − α0
+

α1

z − α1
+ · · · + αn−1

z − αn−1
.

Here zn − 1 has the n (simple) roots α0, α1, . . . , αn−1, so the decomposition gives in principal,

n

zn − 1
=

A0

z − α0
+

A1

z − α1
+ · · · + An−1

z − αn−1
,

where αn
k = 1 for every k = 0, 1, . . . , n − 1. The coefficients Ak are given by some residue formula,

Ak = n · lim
z→αk

z − αk

zn − 1
=

n

limz→αk

zn − 1
z − αk

=
n

nαn−1
k

=
αk

αn
k

= αk,

and the claim is proved.
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Example 3.8 Two half lines L1 and L2 are given in the complex plane C by

L1 = {z | Im(z) = 0 ∧ Re(z) ≤ 2}, L2 = {z | Im(z) = −1 ∧ Re(z) ≤ 0}.

Given some C1-curve K in Ω = C \ {L1 ∪ L2} with initial point z = −2i and end point z = 2i.
Compute∫

K

2z − 6 − i

(z − 2)(z + i)
dz.

–2

–1

0

1

2

–2 –1 1 2 3 4

Figure 1: A possible curve K from −2i to 2i without intersecting the lines L1 and L2.

We get by a decomposition,

2z − 6 − i

(z − 2)(z + i)
= − 1

z − 2
+

3
z + i

,

so if the curve K lies in Ω, then∫
K

2z − 6 − i

(z − 2)(z + i)
dz =

∫
K

{
− 1

z − 2
+

3
z + i

}
dz = [− Log(z − 2) + 3Log(z + i)]2i

−2i

− Log(−2 + 2i) + 3Log(3i) + Log(−2 − 2i) − 3Log(−i)

=
{

ln | − 2 + 2i| + i
3π
4

}
+ 3
{

ln 3 + i
π

2

}
+
{

ln | − 2 − 2i| − i
3π
4

}
− 3
{

ln 1 − i
π

2

}

= − 3π
2

+ 3 ln 3 + 3iπ = 3 ln 3 + i
3π
2

,

because K lies in the domains of Log(z − 2) and Log(z + i).
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4 The exponential function and the logarithm function

Example 4.1 Find every complex number z, which fulfils the equation

e2z+4i = 3
√

3 + 3i,

and indicate the solution which has the smallest module.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Figure 2: The vector 3
√

3 + 3i of length 6 and corresponding angle
π

6
.

Since

|3
√

3 + 3i| =
√

27 + 9 = 6,

it follows that

3
√

3 + 3i = 6

{√
3

2
+ i

1
2

}
= 6 exp

(
i
π

6

)
= exp

(
ln 6 + i

{π

6
+ 2pπ

})
, p ∈ Z.

–1.5

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8

Figure 3: The solutions, when p = 0 and p = 1.
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We have already taken care of the uncertainty of the exponent modulo 2πi, so we conclude that

2z + 4i = ln 6 + i
{π

6
+ 2pπ

}
, p ∈ Z,

thus

z =
1
2

ln 6 + i
{ π

12
− 2 + pπ

}
, p ∈ Z.

Now,

π

12
− 2 ≈ −1, 738 and

π

12
− 2 + 1 · π ≈ 1, 403,

so we conclude from the figure that the smallest module (i.e. the smallest absolute value) is obtained
when p = 1 (and not when p = 0). Hence, the solution of smallest module is given by

z0 =
1
2

ln 6 + i
{ π

12
− 2 + π

}
=

1
2

ln 6 + i

{
13π
12

− 2
}

.

Example 4.2 Describe the streamlines for the complex potential

F (z) = ez,

where y ∈ [0, π].

0

0.5

1

1.5

2

2.5

3

y

–3 –2 –1 1 2 3

x

Figure 4: Some streamlines for the potential F (z) = ez.

The stream function is given by

ψ(x, y) = Im (ez) = ex sin y.

Clearly, y = 0 or y = π correspond to ψ(x, y) = 0.
If y ∈ ]0, π[, then

ψ(x, y) = ex sin y > 0.
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Hence, the streamlines are given by

ψ(x, y) = ex sin y = c > 0,

thus

x = ln
(

c

sin y

)
, y ∈ ]0, π[, c ∈ R+,

because it is here easier to express x as a function of y than vice versa.

Example 4.3 Prove that

2
√

2 exp
(

πi

12

)
=
(√

3 + 1
)

+ i
(√

3 − 1
)

.

Hint: Apply

1
12

=
1
3
− 1

4
.

Using the hint we get

2
√

2 exp
(

πi

12

)
= 2

√
2 · exp

(
πi

3

)
· exp

(
−πi

4

)
= 2

√
2 ·
(
cos

π

3
+ i sin

π

3

)
·
(
cos

π

4
− i sin

π

4

)

= 2
√

2 ·
(

1
2

+ i

√
3

2

)(
1√
2
− i

1√
2

)
=
(
1 + i

√
3
)

(1 − i) =
(
1 +

√
3
)

+ i
(√

3 − 1
)

.
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Example 4.4 Compute∮
|z|=R

Log z

z2
dz,

by considering the line integral along the curve C with the parametric description

z(t) = R eit, t ∈ ] − π, π], R > 0.

In this case it is not possible to apply Cauchy’s integral theorem, so instead we insert the parametric
description. This gives∮

|z|=R

Log z

z2
dz =

∫ π

−π

Log
(
R eit

)
R2e2it

· i R eit dt = i

∫ π

−π

lnR + it

R eit
dt

=
i

R

∫ π

−π

(ln R + it)(cos t − i sin t) dt

=
i

R

∫ π

−π

{(ln R · cos t + t sin t) + i(t cos t − lnR · sin t)} dt

=
i

R

∫ π

−π

{t · sin t + i t · cos t} dt = − 1
R

∫ π

−π

t · cos t dt +
i

R

∫ π

−π

t · sin t dt

= 0 +
i

R

[
−t · cos t +

∫
cos t dt

]π

−π

=
i

R
{−π · (−1) + (−π) · (−1)} =

2πi

R
.

Alternatively we may use the following shorter version,∮
|z|=R

Log z

z2
dz =

∫ π

−π

Log
(
R eit

)
R2e2it

· i R eit dt = i

∫ π

−π

lnR + it

R eit
dt

= i

∫ π

−π

lnR

R
· e−it dt − 1

R

∫ π

−π

t e−it dt

=
lnR

R

[−e−it
]π
−π

− 1
R

[
+t · 1

−i
e−it

]π

−π

+
1
R

·
(
−1

i

)∫ π

−π

e−it dt

= 0 − 1
R

· i {π · (−1) − (−π) · (−1)} + 0 =
2πi

R
.

Example 4.5 Let Ω = C \ (R− ∪ {0}). Find the value of the limit

lim
y→0+

{Log(a + iy) − Log(a − iy)} ,

partly when a ∈ R+, and partly when a ∈ R−
What happens if a = 0?

1) If a ∈ R+, then Log(a + iy) is continuous in y ∈ R, thus

lim
y→0+

{Log(a + iy) − Log(a − iy)} = 0 for a ∈ R+.
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2) If a ∈ R−, then Log(a + iy) tends towards ln |a| + iπ for y → 0+, and Log(a − iy) tends towards
ln |a| − iπ for y → 0+, hence

lim
y→0+

{ Log(a + iy) − Log(a − iy)} = 2πi for a ∈ R−.

3) If a = 0, then

lim
y→0+

{Log(iy) − Log(−iy)} =
π

2
i −
(
−π

2
i
)

= πi, for a = 0.

Example 4.6 Given the function

f(z) = Log
(
z2 + 2

)
,

where Log denotes the principal branch of the logarithm, and denote by A the largest domain in C, in
which f is analytic.

1) Find and sketch the domain A. Then find the derivative f ′(z) as a function of z.

2) Let γ : [0, 1] → A denote any differentiable curve in A of initial point γ(0) = 0 and end point
γ(1) = −1 + i. Prove that∫

γ

2z
z2 + 2

dz = ln
√

2 − i
π

4
.

Figure 5: The set A with the two slits given by x = 0 and |y| ≥ √
2 and with a possible path of

integration γ from 0 to −1 + i.

1) The principal branch Log of the logarithm is analytic in the plane with a slit alon g the negative
real axis

C \ {z ∈ C | Re(z) ≤ 0, Im(z) = 0},
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so if we put g(z) = z2 + 2, then the composed function f = Log ◦ g is analytic in the set

A = C \ {z ∈ C | Re
(
z2 + 2

) ≤ 0, Im
(
z2 + 2

)
= 0}

= C \ {z = x + iy | x2 − y2 + 2 ≤ 0, 2xy = 0}.

It follows that the exception set is defined by either x = 0 or y = 0. Clearly, y = 0 is not possible,
so we get x = 0. Then we must have in the exception set that |y| ≥ √

2. We have prove that

A = C \ {iy | y ≤ −
√

2 or y ≥
√

2}.

The function f(z) = Log
(
z2 + 2

)
is analytic in A, so it follows by the chain rule that

f ′(z) =
2z

z2 + 2
, z ∈ A.

2) Let γ : [0, 1] → A be a parametric description of any differentiable curve from 0 ∈ A to −1+ i ∈ A.
The integrand is equal to f ′(z), found above, so the primitive is given by

∫
γ

f ′(z) dz = f(γ(1)) − f(γ(0)) = f(−1 + i) − f(0) = Log
(
(−1 + i)2 + 2

)− Log
(
02 + 2

)
= Log(−2i + 2) − Log 2 = Log(1 − i) =

1
2

ln 2 − i
π

4
,

where we have used that Log 2 = ln 2.
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Example 4.7 Define

F (z) = exp
(
z2
)
, z ∈ C.

(a) Describe for every real constant R > 0 the set of points z ∈ C, for which

|F (z)| = R.

Show in particular on a figure

{z ∈ C | |F (z)| = R}
for representative values of R.

Let

z = r eiθ, r ≥ 0, θ ∈ ] − π, π],

be the description in polar coordinates of z.

(b) Find every θ0 ∈ ] − π, π], such that

F (z) = F (r exp (iθ0))

never takes on a negative, real value on the half line from 0,

�θ0 = {z = r exp (i θ0) | r ≥ 0} .

(c) For any other θ ∈ ] − π, π] find the smallest

r = r(θ) > 0,

on the half line �θ, such that

F (z) = F (r exp(i θ)) ∈ R−, z ∈ �θ.

(d) Prove that the function r(θ) defined in (c) has a minimum > 0, and then find the largest open
disc

B(0, R) = {z ∈ C | |z| < R},
for which F (z) /∈ R− for every z ∈ B(0, R).

(a) It follows from

|F (z)| =
∣∣exp

(
z2
)∣∣ = ∣∣exp

(
x2 − y2 + 2i xy

)∣∣ = exp
(
x2 − y2

)
= R > 0,

that

x2 − y2 = lnR ∈ R,

which is the equation of a system of hyperbolas, supplied with the straight lines y = x and y = −x,
both corresponding to R = 1.
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–2

–1

0

1

2

–2 –1 1 2

Figure 6: Some level curves F (z)| = ex2−y2
= R > 0.

(b) By using polar coordinates we get the description

F
(
r eiθ

)
= exp

(
r2 cos 2θ

) · exp
(
i r2 sin 2θ

)
.

This represents a negative number, if and only if

(1) r2 sin 2θ = π + 2pπ, p ∈ Z.

Since r ≥ 0 varies, the only possibility that (1) is never fulfilled is when sin 2θ = 0, thus if and
only if

θ0 ∈
{
−π

2
, 0 ,

π

2
, π
}

,

because we have assumed that θ0 ∈ ] − π, π].
The four corresponding half lines are the four half axes (the positive and negative x and y axes)
from 0.

It follows immediately that

F (x) = exp
(
x2
)

> 0 for every x ∈ R,

and

F (iy) = exp
(−y2

)
> 0 for every y ∈ R,

hence F (z) /∈ R− for z on any of the coordinate axes.

(c) If

θ ∈ ] − π, π] \
{
−π

2
, 0 ,

π

2
, π
}

,

then sin 2θ �= 0, and it follows from (1) that

r2 =
π + 2pπ

sin 2θ
, p ∈ Z.
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Then the smallest possible r = r(θ) is given by

r(θ)2 = min
p∈Z

π + 2pπ

sin 2θ
=

π

| sin 2θ| ,

thus

r(θ) =
√

π

| sin 2θ| , θ ∈ ] − π, π] \
{
−π

2
, 0 ,

π

2
, π
}

.

(d) It follows from the expression of r(θ) in (c) that r (θ1) is smallest, when |sin 2θ1| is largest, thus
when |sin 2θ1| = 1, corresponding to

θ1 ∈
{
−3π

4
, −π

4
,

π

4
,

3π
4

}
,

so the minimum value is

r (θ1) =
√

π

1
=

√
π.
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Now,

F
(√

π ei θ1
)

= eπ cos 2θ1eiπ·sin 2θ1 = e0 · e±iπ = −1,

so it follows that the largest open disc B(0, R), for which F (z) /∈ R− for all z ∈ B(0, R), is given
by

B
(
0,
√

π
)

=
{
z ∈ C | |z| <

√
π
}

,

corresponding to R =
√

π.

Example 4.8 Let

F (z) = exp
(

1
z

)
, z ∈ C \ {0}.

(a) Describe for every value of R > 0 the point set

{z ∈ C \ {0} | |F (z)| = R},
and sketch a representative number of the set.

(b) Find the set of points A, for which F (z) is real, thus

A = {z ∈ C \ {0} | F (z) ∈ R}.
The set A is naturally into decomposed into infinitely many components of connection. Sketch a
representative number of these.

–3

–2

–1

0

1

2

3

–4 –2 2 4

Figure 7: (a) Some of the curves |F (z)| = R.

(a) If z �= 0, then

0 < R = |F (z)| = exp
(

Re
(

1
z

))
= exp

(
x

x2 + y2

)
,
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hence
x

x2 + y2
= lnR, (z, y) �= (0, 0).

If R = 1, then we get the two half lines x = 0, y �= 0 of the y axis.

If R �= 1, then

x2 + y2 =
1

lnR
x,

which we write as{
x − 1

2 ln R

}2

+ y2 =
{

1
2 lnR

}2

, (x, y) �= (0, 0),

i.e. some circles (with exceptional points)

centrum:
(

1
2 lnR

, 0
)

and radius:
∣∣∣∣ 1
2 lnR

∣∣∣∣ .

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

–0.3 –0.2 –0.1 0.1 0.2 0.3

Figure 8: Some of the circles of radius
1

2π|p| .

(b) If z �= 0, then

F (z) = exp
(

1
z

)
∈ R,

when

Im
(

exp
(

1
z

))
= exp

(
x

x2 + y2

)
sin
(
− y

x2 + y2

)
00,

hence
y

x2 + y2
= pπ, p ∈ Z.
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When p = 0 we get y = 0, x �= 0, thus the positive and then negative real half axes.
If p �= 0, then

x2 +
{

y − 1
2pπ

}2

=
{

1
2pπ

}2

, (x, y) �= (0, 0),

which describes some circles (with exceptional points) of

centrum:
(

0 ,
1

2pπ

)
and radius:

1
2π|p| , p ∈ Z \ {0}.

Note that the radius in this case only go through{
1

2πn
| n ∈ N

}
,

and not all of R+.

Example 4.9 1) Prove that we have at any point z on the horizontal lines

Im(z) = π + 2nπ, n ∈ Z,

that ez < 0, and hence |ez − 1| > 1.

2) Prove that we have at any point z on the vertical lines

Re(z) = r, |r| > 1,

have

|ez − 1| >
1
2
.

1) If Im(z) = π + 2nπ, n ∈ Z, then

z = x + i(π + 2nπ), x ∈ R og n ∈ Z,

hence

ez = ex+i(π+2nπ) = −ex < 0, n ∈ Z.

Then it is trivial that |ez − 1| > 1 for every such z.

2) If Re(z) = r, |r| > 1, then

z = r + iy, |r| > 1 og y ∈ R,

hence

|ez − 1| =
∣∣ereiy − 1

∣∣ ≥ |er − 1| ≥

⎧⎪⎨
⎪⎩

e − 1 for r ≥ 1

1 − 1
e

for r ≤ −1

⎫⎪⎬
⎪⎭ >

1
2
.
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Example 4.10 1) Find the solutions of the equation

z2 = 3 + i4

in the form z = x + iy.

2) Find the solutions of the equation

eiz − (1 + i)e−iz = i.

in the form z = x + iy.

1) It follows from

z2 = 3 + 4i = 22 + i2 + 2 · 2i = (2 + i)2,

that the solutions are

z1 = 2 + i og z2 = −2 − i.

The exponential function and the logarithm function

Dedicated Analytical Solutions
FOSS
Slangerupgade 69
3400 Hillerød
Tel. +45 70103370

www.foss.dk

The Family owned FOSS group is 

the world leader as supplier of 

dedicated, high-tech analytical 

solutions which measure and 

control the quality and produc-

tion of agricultural, food, phar-

maceutical and chemical produ-

cts. Main activities are initiated 

from Denmark, Sweden and USA 

with headquarters domiciled in 

Hillerød, DK. The products are 

marketed globally by 23 sales 

companies and an extensive net 

of distributors. In line with 

the corevalue to be ‘First’, the 

company intends to expand 

its market position.

Employees at FOSS Analytical A/S are living proof of the company value - First - using 
new inventions to make dedicated solutions for our customers. With sharp minds and 
cross functional teamwork, we constantly strive to develop new unique products - 
Would you like to join our team?

FOSS works diligently with innovation and development as basis for its growth. It is 
reflected in the fact that more than 200 of the 1200 employees in FOSS work with Re-
search & Development in Scandinavia and USA. Engineers at FOSS work in production, 
development and marketing, within a wide range of different fields, i.e. Chemistry, 
Electronics, Mechanics, Software, Optics, Microbiology, Chemometrics.

Sharp Minds - Bright Ideas!

We offer
A challenging job in an international and innovative company that is leading in its field. You will get the 
opportunity to work with the most advanced technology together with highly skilled colleagues. 

Read more about FOSS at www.foss.dk - or go directly to our student site www.foss.dk/sharpminds where 
you can learn more about your possibilities of working together with us on projects, your thesis etc.

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/364493/42


Download free books at BookBooN.com

Complex Functions Examples c-3

 

43  

2) When we multiply the equation by eiz �= 0, then we get after a small rearrangement the equivalent
equation of second order in eiz,

(
eiz
)2 − i eiz − (1 + i) = 0.

The solution is

eiz =
1
2

{
i ±
√
−1 + 4(1 + i)

}
=

1
2

{
i ±√

3 + 4i
}

=
1
2
{i ± (2 + i)} =

⎧⎨
⎩

1 + i,

−1.

From here we get the two families of solutions

z1,p =
1
i

log(1 + i) =
1
i

{
1
2

ln 2 + i
(π

4
+ 2pπ

)}
=

π

4
+ 2pπ − i

2
ln 2, p ∈ Z,

and

z2,p =
1
i

log(−1) =
1
i
· i {π + 2pπ} = π + 2pπ, p ∈ Z.

Example 4.11 Find the solutions of the equation

eiz − 2 e−iz = 3i.

A multiplication by eiz �= 0 follows by a rearrangement gives the equivalent equation of second order
in eiz,

(
eiz
)2 − 3i · eiz − 2 = 0,

with the solutions

eiz =
1
2
{
3i ±√−9 + 4 · 2} =

1
2
{3i ± i} =

⎧⎨
⎩

2i,

i.

Then finally,

z =

⎧⎪⎪⎨
⎪⎪⎩

1
i

log(2i) =
1
i

{
ln 2 + i

(π

2
+ 2pπ

)}
=

π

2
+ 2pπ − i ln 2,

1
i

log(i) =
1
i
· i
(π

2
+ 2pπ

)
=

π

2
+ 2pπ,

p ∈ Z.
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Example 4.12 Consider the principal branch of the square root

f(z) =
√

z = exp
(

1
2

Log z

)
,

an also the function

g(z) = f
(
1 − z3

)
.

1) Find the domains of analyticity A of f , and B of g, and sketch B.
Find the derivative g′(z) for z ∈ B.

2) Denote by Γ any oriented closed curve in B, and find the value of the line integral∮
Γ

g′(z) dz.

Let γ denote any oriented curve in B of initial point z = −i and end point z = i. Prove that∫
γ

g′(z) dz = i 2 4
√

2 sin
(π

8

)
.

1) Clearly,

A = C \ {z ∈ C | Re(z) ≤ 0, Im(z) = 0}.
The exceptional set of g is given by 1 − z3 ∈ R− ∪ {0}, hence z3 ∈ [1,+∞[, and thus

B = C \
{

z ∈ C

∣∣∣∣ z = r · eiθ, r ≥ 1, θ ∈
{
−2π

3
, 0 ,

2π
3

}}
.

Figure 9: The set B with its three slits.

Then we get by the chain rule,

g′(z) = f ′ (1 − z3
) · (−3z2

)
=

1
2
· 1
1 − z3

√
1 − z3 · (−3z2

)
= −3

2
· z2

1 − z3

√
1 − z3 for z ∈ B.
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2) Now, g′(z) is analytic in B, and Γ is a closed curve in B, so it follows from Cauchy’s integral
theorem that∮

Γ

g′(z) dz = 0.

Furthermore, ±i ∈ B, so∫
γ

g′(z) dz = [g(z)]i−i = f(1 − i) − f(1 + i) = f
(√

2 · exp
(
−i

π

4

))
− f
(√

2 · exp
(
i
π

4

))
= 4

√
2 · exp

(
−i

π

8

)
− 4

√
2 · exp

(
i
π

8

)
= 2i 4

√
2 · sin

(π

8

)
.

Example 4.13 Denote the principal branch of the logarithm by Log.

1) Prove that F (z) = z Log z − z is a primitive of Log in the slitted plane

D� = C\] −∞, 0].

2) Denote by γ e curve in D� of initial point zI = 1 and end point zT = i. Explain why the value of∫
γ

Log z dz

is independent of the path γ and find the value.

1) We see that F (z) = z Log z − z is precisely defined and analytic in D� = C\] −∞, 0]. Hence, it
suffices to prove that

F ′(z) = Log z for z ∈ D�.

This follows from

F ′(z) = Log z + z · 1
z
− 1 = Log z.

2) Clearly, Log z is analytic in D�, and since F (z) is a primitive of Log z, we get

∫
γ

Log z dz = [F (z)]i1 = 1 · Log 1 − 1 − i · Log i + i = 0 − 1 − i
{

i ·
(π

2

)}
+ i

= −1 +
π

2
+ i.
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5 Trigonometric and hyperbolic functions

Example 5.1 Find the real and imaginary parts of

(a) cosh(πi), (b) ei, (c) sin(πi), (d) sinh(1 + i).

(a) Since cosh(πi) = cos π = −1, we get

Re(cosh(πi)) = −1 and Im(cosh(πi)) = 0.

(b) Since ei = cos 1 + i sin 1, we get

Re
(
ei
)

= cos 1 and Im
(
ei
)

= sin 1.

(c) Since sin(πi) = i sinhπ, we get

Re(sin(πi)) = 0 og Im(sin(πi)) = sinhπ.

(d) Since

sinh(1 + i) = sinh 1 · cos 1 + i cosh 1 · sin 1,

we get

Re(sinh(1 + i)) = sinh 1 · cos 1, Im(sinh(1 + i)) = cosh 1 · sin 1.

Trigonometric and hyperbolic functions
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Example 5.2 Prove that

2 eiθ cos θ = 1 + e2iθ.

Then prove that∫ π

0

cos3 θ cos 3θ dθ =
π

8
.

It follows from

2 eiθ cos θ = 2 eiθ · 1
2
{
eiθ + e−iθ

}
= 1 + e2iθ,

that

eiθ cos θ =
1
2
{
1 + e2iθ

}
.

By taking the third power of this relation, we get

e3iθ cos3 θ = cos 3θ · cos3 θ + i sin 3θ · cos3 θ =
1
8
(
1 + e2iθ

)3
,

hence∫ π

0

cos3 θ cos 3θ dθ = Re
{

1
8

∫ π

0

(
1 + e2iθ

)3
dθ

}
=

1
8

Re
∫ π

0

{
1 + 3e2iθ + 3e4iθ + e6iθ

}
dθ =

π

8
.

Example 5.3 Prove that the map w = cos z usually maps the straight lines Re(z) = k into hyperbolas,
and the straight lines Im(z) = k into ellipses in the w-plane.
Find the values of k ∈ R for which we instead get a straight line, a half line or an interval.

When we separate

w = u + iv = cos x · cosh y − i sin x · sinh y,

into the real and the imaginary part, we get

u(x, y) = cos x · cosh y and v(x, y) = − sin x · sinh y.

Put Re(z) = x = k. If k =
π

2
+ pπ, p ∈ Z, then

u = 0 og v = (−1)p+1 sinh y, y ∈ R,

thus the image is in this case the v-axis u = 0.

If k = pπ, p ∈ Z, then

u = (−1)p cosh y and v = 0, y ∈ R.

In this case the image is one of the two half lines ] −∞, 1] and [1,+∞[ on the u-axis, depending on
whether p is odd or even.
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–3
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x

Figure 10: The two orthogonal systems of curves.

If k �= p · π

2
, p ∈ Z, the cos k · sin k �= 0, so

u

cos k
= cosh y,

v

sin k
= − sinh y.

When we eliminate the parameter y we get an equation of a hyperbola

u2

cos2 k
− v2

sin2 k
= 1.

Now let Im(z) = y = k. If k = 0, then

(u, v) = (cos x, 0), x ∈ R,

and the image is the interval [−1, 1] on the u-axis.

If k �= 0, then

u

cosh k
= cos x,

v

sinh k
= − sin x, x ∈ R.

When we eliminate the parameter x we obtain an equation of an ellipse

u2

cosh2 k
+

v2

sinh2 = 1.
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Example 5.4 Prove that∣∣∣∣∣
∮
|z|=1

sin z

z2
dz

∣∣∣∣∣ ≤ 2πe.

It follows from

sin z = sin(x + iy) = sinx · cosh y + i cos x · sinh y,

that

| sin z|2 = sin2 x · cosh2 y + cos2 x · sinh2 y = sin2 x · cosh2 y + cos2 x · (cosh2 y − 1)
= cosh2 y − cos2 x.

Therefore, if |z| ≤ 1, then we get the estimate

| sin z| =
√

cosh2 y − cos2 x ≤ cosh y ≤ ey ≤ e.

Then∣∣∣∣∣
∮
|z|=1

sin z

z2
dz

∣∣∣∣∣ ≤ max
|z|=1

∣∣∣∣ sin z

|z|2
∣∣∣∣ · 2π ≤ 2π cosh 1

12
< 2πe.

Remark 5.1 We shall here demonstrate – although it will later follow more systematically – that∮
|z|=1

sin z

z2
dz = 2πi.

First method. If one already knows a little of calculus of residues, then the task is quite simple: We

see that z = 0 is a simple pole of
sin z

z2
, because sin z has a simple zero for z = 0, and because

z = 0 is the only singularity inside the circle |z| = 1. Hence by the theorem of residues,∮
|z|=1

sin z

z2
dz = 2πi res

(
sin z

z2
; 0
)

= 2πi lim
z→0

sin z

z
= 2πi.

Second method. It is actually possible already with the present theory available to find the value.

Since
sin z

z2
is analytic in C\{0}, it follows by introducing the smaller path of integration |z| = r < 1,

run through once in the positive direction,
∮
|z|=r

, and once in the negative direction,
∮ �

|z|=r
, that

∮
|z|=1

sin z

z2
dx =

{∮
|z|=1

sin z

z2
dz +

∮ �

|z|=r

sin z

z2
dz

}
+
∮
|z|=r

sin z

z2
dz

= 0 +
∮
|z|=r

sin z

z2
dz = lim

r→0+

∮
|z|=r

sin z

z2
dz,

where we have used Cauchy’s integral theorem for the multiple connected domain between the two
circles.
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–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Figure 11: The oriented path of integration |z| = 1, and the two additional paths of integration |z| = r
with opposite orientation in the second method.

Then by a Taylor expansion,

sin z = z − 1
6

z3 + o
(
z3
)
,

hence by insertion,∮
|z|=1

sin z

z2
dz = lim

r→0+

1
z2

{
z − 1

6
z3 + o

(
z3
)}

dz = lim
r→0+

∮
|z|=r

1
z

dz− lim
r→0+

∮
|z|=r

{
1
6

z + o(z)
}

dz.
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It is well-known that∮
|z|=r

1
z

dz =
∫ 2π

0

1
eiθ

i eiθ dθ = 2πi,

for every r > 0, and since∣∣∣∣∣
∮
|z|=r

{
1
6

z + o(z)
}

dz

∣∣∣∣∣ ≤
{

1
6

r + o(r)
}
· 2πr → 0 for r → 0+,

it follows by taking the limit that∮
|z|=1

sin z

z2
dz = 2πi + 0 = 2πi. ♦

Example 5.5 Find the value of
∫ 3i

0

cos2(π i z) sin2(π i z) dz.

One should not be fooled by the rather complicated integrand. This is only an easy exercise in finding
a primitive, because the integrand of course is analytic in C, and hence independent of the path of
integration:∫ 3i

0

cos2(π i z) sin2(π i z) dz =
1
4

∫ 3i

0

sin2(2π i z) dz =
1
4

∫ 3i

0

1
2
{1 − cos(4π i z)} dz

=
1
8

∫ 3i

0

{1 − cosh(4π z)} dz =
1
8
· 3i − 1

8
· 1
4π

[sinh(4π z]3i
0

=
3i
8

− 1
32π

sinh(12πi) =
3i
8

− i

32π
sin(12π) =

3i
8

.

Example 5.6 Describe the streamlines of the complex potential

F (z) = sinh z, y ∈ [0, π].

The stream function is here given by

ψ(x, y) = Im(F (z)) = Im(sinh z) = coshx · sin y.

Clearly, y = 0 and y = π are streamlines corresponding to ψ(x, y) = 0.
If y ∈ ]0, π[, then ψ(x, y) > 0, and the streamlines are given by

ψ(x, y) = cosh x · sin y = c ∈ R+.

When we continue our investigation, we must split into the three cases,

x ∈ ]0, 1[, c = 1, and c ∈ ]1,+∞[.
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Figure 12: Sketch of the streamlines.

1) If c ∈ ]0, 1[, then y is expressed as functions of x by

y = Arcsin
( c

coshx

)
and y = π − Arcsin

( c

cosh x

)
.

2) If c = 1, then we get the two so-called separatrices, most easily described by

x = ± Arcosh
(

1
sin y

)
= ± ln

(
1 +
√

1 − sin2

sin y

)
= ± ln

(
1 ± cos y

sin y

)
= ± ln

(
cot

y

2

)
,

because

ln
(

1 − cos y

sin y

)
= − ln

(
1 + cos y

sin y

)
,

and we can combine the two ± signs into one.

3) If c > 1, we express x by y (the same trick is used on ±):

x = ± Arcosh
(

c

sin y

)
= ± ln

(
c +
√

c2 − sin2 y

sin y

)
.

Example 5.7 Prove that the image of

D =
{

z = x + iy | x ≥ 0, 0 ≤ y ≤ π

2

}
by f(z) = cosh z is the closed first quadrant in the w-plane, and find the image of each of the three
natural parts of the boundary ∂D of D by the map f .

It follows by a separation into real and imaginary parts of

u + iv = cosh(x + iy) = cosh x · cos y + i sinhx · sin y,
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Figure 13: The domains D (to the left) and f(D) (to the right).

that

u(x, y) = cosh x · cos y, v(x, y) = sinhx · sin y.

The image of the part A1 of the boundary, given by x ≥ 0 and y =
π

2
, is

u
(
x,

π

2

)
= 0, v

(
x,

π

2

)
= sinhx ∈ [0,+∞[ for x ∈ [0,+∞[.

The image of the part A2 of the boundary, given by x = 0 and y ∈
[
0,

π

2

]
, is

u(0, y) = cos y, v(0, y) = 0, y ∈
[
0 ,

π

2

]
.

The image of the part A3 of the boundary, given by x ≥ 0 and y = 0, is

u(x, 0) = cosh x ∈ [1,+∞[, v(x, 0) = 0, x ∈ [0,+∞[.

It follows that the boundary of D is mapped into the boundary of the first quadrant.

Assume that w = u + iv belongs to the first quadrant, thus u > 0 and v > 0. We shall prove that one
can find a z ∈ D, such that cosh z = w. Consider

log
(
w +

√
w2 − 1

)
= log

(
u + iv +

√
u2 − v2 − 1 + 2iuv

)
.

It follows from 2uv > 0 that u2 − v2 −1+2iuv lies in the upper half plane. By choosing the slit of the
square root along the negative real axis and fixing the square root of a positive number as positive,
we obtain that both u + iv and

√
u2 − v2 − 1 + 2iuv lie in the first quadrant, hence their sum will

also lie in the first quadrant, so the principal argument of the sum lies in
]
0,

π

2

[
.
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Clearly, Log
(
w +

√
w2 − 1

)
belongs to D for |w| large and w in the first quadrant,

ln
(∣∣∣w +

√
w2 − 1

∣∣∣) > 0),

so we conclude that the image of the first quadrant by Arcosh is precisely D.

Example 5.8 Express tan z by means of the exponential function.
Apply the result in order to prove that

tan z =
sin 2x + i sinh 2y
cos 2x + cosh 2y

.

If follows from the definition that

tan z =
sin z

cos z
=

eiz − e−iz

2i
eiz + e−iz

2

=
1
i

eiz − e−iz

eiz + e−iz
=

1
i

e2iz − 1
e2iz + 1

.
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Then by some computation,

tan z =
1
i

e2iz − 1
e2iz + 1

=
1
i

e−2y+2ix − 1
e−2y+2ix + 1

· e−2y−2ix + 1
e−2y−2ix + 1

=
1
i

e−4y + e−2y+2ix − e−2y−2ix − 1
e−4y + e−2y+2ix + e−2y−2ix + 1

=
1
i

e−2y − e2y + e2ix − e−2ix

e−2y + e2y + e2ix + e−2ix
=

i · e2y − e−2y

2
+

e2ix − e−2ix

2i
e2y + e−2y

2
+

e2ix + e−2ix

2

=
sin 2x + i sinh 2y
cos 2x + cosh 2y

.

Note that cosh 2y ≥ 1, so the denominator is zero if and only if both y = 0 and cos 2x = −1, so tan z
is not defined in the points of C, where

z =
π

2
+ pπ, p ∈ Z,

which are the same exceptional points as in the real case.

Example 5.9 Assume that f(t) is a continuous function on R, and let A ∈ R+. Prove that

∫ A

−A

f(t) cos(zt) dt

is an analytic function in z ∈ C.

Clearly, f(t) cos(zt) is uniformly continuous for t ∈ [−A,A] for every fixed z ∈ C, and since

∂

∂z
{f(t) cos(zt)} = −t · f(t) sin(zt)

also is uniformly continuous in t ∈ [−A,A] for every fixed z ∈ C, one may differentiate below the sign
of integral with respect to the parameter z ∈ C,

d

dz

∫ A

−A

f(t) cos(zt) dt =
∫ A

−A ∂z
{f(t) cos(zt)} dt = −

∫ A

−A

t · f(t) sin(zt) dt.

This proves that
∫ A

−A
f(t) cos(zt) dt is complex differentiable in C with a continuous derivative, hence

the integral is an analytic function in C.

Example 5.10 Find the solutions z ∈ C of the equation

tan z = i
(
1 + eiz

)
.

We put w = eiz for z ∈ C. Then in particular, w ∈ C \ {0}. By using the definition of tan z,

tan z =
sin z

cos z
=

1
i

e2iz − 1
e2iz + 1

=
1
i

w1 − 1
w2 + 1

.

Since we require that tan z is defined, we must have w2 �= −1. Hence,

w ∈ C \ {−i , 0 , i} = Ω.
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Then we put w = eiz ∈ Ω into the given equation, and obtain after a rearrangement,

0 = i
(
1 + eiz

)− tan z = i(1 + w) − 1
i

w2 − 1
w2 + 1

= i

{
w + 1 +

w2 − 1
w2 + 1

}
= i(w + 1)

{
1 +

w − 1
w2 + 1

}

= i(w + 1) · w2 + 1 + w − 1
wr + 1

= i
(w + 1)2w

w2 + 1
,

where we shall solve the equation for w ∈ Ω = C \ {−i , 0 , i}.
It follows from w �= 0 that w = −1 is the only possibility, corresponding to

w = eiz = −1,

hence

z =
1
i

log(−1) =
1
i

(iπ + 2ipπ) = π + 2pπ, p ∈ Z.

The complete solution is

z = π + 2pπ, p ∈ Z.

Example 5.11 Find all complex solutions of the equation

{(1 + i) cos z + (1 − i) sin z}4 = 16i.

First we get

(1 + i) cos z + (1 − i) sin z =
√

2
2

{
exp
(
i
π

4

)
· (eiz + e−iz

)− i exp
(
−i

π

4

)
· (eiz − e−iz

)}
=

1√
2

{
exp
(
i
π

4

)
· (eiz + e−iz

)− exp
(
i
π

4

)
· (eiz − e−iz

)}

=
1√
2

exp
(
i
π

4

)
· 2 e−iz =

√
2 · exp

(
i
{π

4
− z
})

.

Then by insertion into the equation,

{(1 + i) cos z + (1 − i) sin z}4 = 4 exp(i{π − 4z}) = −4 e−4iz = 16i,

and the equation is reduced to

e4iz = − 4
16i

=
i

4
= exp

(
−2 ln 2 + i

{π

2
+ 2pπ

})
, p ∈ Z.

Then by taking the logarithm,

4iz = −2 ln 2 + i
{π

2
+ 2pπ

}
, p ∈ Z,

and the complete solution becomes

zp =
π

8
+ p

π

2
+

i

2
ln 2, p ∈ Z.
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Example 5.12 Find the complete complex solution of the trigonometric equation

3 cos 2z − 10 cos z + 3.

It follows from

0 = 3 cos 2z − 10 cos z + 3 = 3
(
2 cos2 z − 1

)− 10 cos z + 3

= 6 cos2 z − 10 cos z = 2 cos z(3 cos z − 5)

that either cos z = 0 the solution of which is z =
π

2
+ p1π, p1 ∈ Z, or cos z =

5
3
. If we put w = eiz,

then the latter equation is written

0 = 2 cos z − 10
3

= w +
1
w

− 10
3

=
1
w

{
w2 − 10

3
w + 1

}
=

1
w

{
w − 1

3

}
{w − 3},

hence

iz = ± log 3 = ± ln 3 + 2pπi, p ∈ Z.

Summing up the equation has the solutions

z =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

2
+ p1π,

i ln 3 + 2p2π,

−i ln 3 + 2p2π,

p1, p2, p3 ∈ Z.

Example 5.13 Find all solutions of the equation

sin z = i,

in the form x + iy.

We get by using the definition of sin z,

i = sin z =
1
2i
{
eiz − e−iz

}
=

1
2i eiz

{
e2iz − 1

}
.

If this is multiplied by 2i eiz �= 0, then

e2iz − 1 = −2 eiz,

hence by and addition of 2eiz + 2 and by interchanging the two sides of the equation

2 =
(
eiz
)2

+ 2 eiz + 1 =
{
eiz + 1

}2
,

thus

eiz = −1 ±
√

2 =
{ √

2 − 1 > 0,
−(

√
2 + 1) < 0.
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Finally, we get the solution

z =

⎧⎪⎪⎨
⎪⎪⎩

1
i

log(
√

2 − 1) = 2pπ − i ln(
√

2 − 1), p ∈ Z,

1
i

log(−√
2 + 1) = π + 2pπ − i ln(

√
2 + 1), p ∈ Z.

It follows from (
√

2 − 1)(
√

2 + 1) = 1 that

ln(
√

2 − 1) = − ln(
√

2 + 1),

so summing up the solution can be written

z =
π

2
+ 2pπ ±

{π

2
− i ln(

√
2 + 1)

}
, p ∈ Z.
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Example 5.14 Find all solutions of the equation

tan z = 3i,

in the form x + iy.

The solutions are given by

z = arctan(3i) =
1
2i

log
(

i − 3i
i + 3i

)
=

1
2i

log
(−2i

4i

)
=

1
2i

log
(
−1

2

)

=
1
2i

{− ln 2 + i(π + 2pπ)} =
π

2
+ pπ +

i

2
ln 2, p ∈ Z.

Example 5.15 Find all complex solutions of the equation

cos z = 2
√

2 i.

Since

2
√

2 i = cos z =
1
2
{
eiz + e−iz

}
is equivalent with the equation of second degree

(
eiz
)2 − 4

√
2i eiz + 1 = 0

in eiz, it follows by the well-known solution formula that

eiz = 2
√

2 i ±√−8 − 1 = (2
√

2 ± 3)i.

hence

z =
1
i

log
(
(2
√

2 ± 3)i
)

=

⎧⎪⎪⎨
⎪⎪⎩

1
i

{
ln(2

√
2 + 3) + i

π

2
+ 2piπ

}
,

1
i

{
ln(3 − 2

√
2) − i

π

2
+ 2piπ

}
,

and thus

z =

⎧⎪⎪⎨
⎪⎪⎩

π

+
2pπ − i ln(2

√
2 + 3) =

π

2
+ 2pπ − 2i ln(

√
2 + 1),

−π

2
+ 2pπ + i ln(2

√
2 + 3) = −π

2
+ 2pπ + 2i ln(

√
2 + 1),

p ∈ Z.

Summing up,

z = 2pπ ±
{π

2
− 2i ln(

√
2 + 1)

}
, p ∈ Z.
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Example 5.16 Find all solutions of the equation

cos z = i
√

3.

It follows from

i
√

3 = cos z =
1
2
{
eiz + e−iz

}
,

by a rearrangement that we have the equivalent equation of second degree in eiz,(
eiz
)2 − 2i

√
3 · eiz + 1 = 0.

The solution is

eiz = i
√

3 ±√−3 − 1 = i
(√

3 ± 2
)

=

⎧⎪⎪⎨
⎪⎪⎩

i(2 +
√

3),

−i(2 −√
3) = − i

2 +
√

3
.

Hence

z =
1
i

log
(
i
(√

3 ± 2
))

=

⎧⎪⎪⎨
⎪⎪⎩

1
i

{
ln(2+

√
3)+i

(π

2
+ 2pπ

)}
=

π

2
+ 2pπ−i ln(2+

√
3),

1
i

{
− ln(2+

√
3)+i

(
−π

2
+ 2pπ

)}
= −π

2
+ 2pπ + i ln(2+

√
3 =),

and summing up,

z = 2pπ ±
{π

2
− i ln(2 +

√
3)
}

, p ∈ Z.

Example 5.17 Given the functions

f(z) =
1
z2

− 1 and g(z) = L0(z)

where L0 denotes the branch of the logarithm, which is defined by

L0 = ln |z| + i arg0(z) where arg0(z) ∈ ]0, 2π].

Find the domains of analyticity of the functions f , g and h = g ◦ f .

Clearly, f is analytic in C \ {0}, and g is analytic in

C \ {z ∈ C | Im(z) = 0 and Re(z) ≥ 0} = C \ (R+ ∪ {0}) .

The exceptional set of h = g ◦ f is given by

1
z2

− 1 = a2, a ≥ 0,
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thus

z = ± 1√
1 + a2

, a ≥ 0,

and the exceptional set is ] −∞,−1] ∪ [1,+∞[ on the real axis. Hence, h is defined in the set

C \ {z ∈ C | |Im(z)| = 0 og |Re(z)| ≥ 1}.
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6 Harmonic functions

Example 6.1 Prove that the function u(x, y) = x3−3xy2 is harmonic, and then find all the harmonic
konjugated to u(x, y).

Clearly, u belongs to the class C∞ (
R

2
)
. Then by partial differentiation,

∂u

∂x
= 3x2 − 3y2,

∂2u

∂x2
= 6x, and

∂u

∂y
= −6xy,

∂2u

∂y2
= −6x.

It follows that

Δu =
∂2u

∂x2
+

∂2u

∂y2
= 6x − 6x = 0,

hence u(x, y) is harmonic.

Then by Cauchy-Riemann’s equations,

∂u

∂x
=

∂v

∂y
og

∂u

∂y
= −∂v

∂y
,

thus

v(x, y) =
∫ {

∂v

∂x
dx +

∂v

∂y
dy

}
+ C =

∫ {
−∂u

∂y
dx +

∂u

∂x
dy

}
+ C

=
∫ {−(−6xy)dx +

(
3x2 − 3y2

)
dy
}

+ C =
∫ {(

6xy dx + 3x2 dy
)− 3y2 dy

}
dy + C

=
∫

d
{
3x2y − y3

}
+ C = 3x2y − y3 + C,

where C ∈ R is an arbitrary constant.

It is almost obvious that

u(x, y) + i v(x, y) = x3 − 3xy2 + i
{
3x2y − y3

}
= z3 = f(z).

Example 6.2 Find the constant a ∈ R, such that the function

u(x, y) = y3 + ax2y

becomes harmonic.
Then find an harmonic konjugated function v of u, and describe f(z) = u + i v as a function of z
alone.

Clearly, u ∈ C∞ (
R

2
)

for every a ∈ R, so u is harmonic, if and only if Δu = 0. It follows by a
computation that

Δu =
∂2u

∂x2
+

∂2u

∂y2
= 6y + 2ay = 2(3 + a)y,
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so Δu is identical zero, if and only if a = −3, in which case

u(x, y) = y3 − 3x2y.

Then we find the harmonic conjugated

v(x, y) =
∫ z

0

{
−∂u

∂y
dx +

∂u

∂x
dy

}
+ C =

∫ z

0

{− (3y2 − 3x2
)

dx − 6xy dy
}

+ C

= −
∫ z

0

{
3
(
y2dx + x dy2

)− d
(
x3
)}

+ C = x3 − 3xy2 + C, C ∈ R,

hence

f(z) = u + i v = y3 − 3x2u + i
(
x3 − 3xy2

)
+ i C = i

{
x3 + 3x2i y + 3x(i y)2 + (i y)3

}
+ i C

= i(x + i y)3 + i C = i z3 + i C, C ∈ R.

Alternatively,

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂u

∂x
− i

∂u

∂y
= −6xy − i

(
3y2 − 3x2

)
= 3u

{
x2 − y2 + 2i xy

}
= 3i z2,

and then by finding a primitive,

f(z) = i z3 + CD1, C1 ∈ C.

We conclude from

Re(f(z)) = Re
(
i z3
)

+ Re (C1) = u(x, y) + 0,

that C1 is purely imaginary, so

f(z) = i z3 + i C, C ∈ R.

Example 6.3 Check if the following functions u(x, y) are harmonic:

(a) u(x, y) = x2 − y2 + y,
(b) u(x, y) = x3 − y3,
(c) u(x, y) = 3x2y − y3 + xy,
(d) u(x, y) = x4 − 6x2y2 + y4 + x3y − xy3.

If u is harmonic, then find the corresponding harmonic conjugated functions v, and f(z) = u + i v.

In all four cases, u ∈ C∞ (
R

2
)
, so we shall only check if Δu = 0.

(a) Here

Δu =
∂2u

∂x2
+

∂2u

∂y2
= 2 − 2 = 0,

hence u is harmonic
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1) It follows by inspection that

u(x, y) = Re
(
z2
)− Re(i z) = Re

(
z2 − i z

)
,

so

v(x, y) = Im
(
z2 − i z

)
+ c = 2xy − x + c, c ∈ R,

and

f(z) = z2 − i z + i c, c ∈ R.

2) Alternatively it follows by Cauchy-Riemann’s equations that

v(x, y) =
∫ {

∂v

∂x
dx +

∂v

∂y
dy

}
+ c =

∫ {
−∂u

∂y
dx +

∂u

∂x
dy

}
+ c

=
∫
{−(−2y + 1) dx + 2x dy} + c =

∫
{2(y dx + x dy) − dx} + c

=
∫

d(2xy − x) + c = 2xy − x + c, c ∈ R,

and

f(z) = u(x, y) + i v(x, y) = x2 − y2 + y + i(2xy − x + c)
= x2 − y2 + 2i xy − i(x + i y) + i c = z2 − i z + i c, c ∈ R.

(b) Since Δu = 6x − 6y �= 0 for y �= x, we conclude that u(x, y) is not harmonic.

(c) Here,

Δu = 6y − 6y = 0,

hence u(x, y) is harmonic.

1) Inspection. Since 3x2y − y3 is a polynomial of third degree, and xy is a polynomial of second
degree in (x, y), it is reasonable to check z3 and z2. Thus

z3 = (x + i y)3 = x3 + 3i x2y − 3xy2 − i y3 =
(
x3 − 3xy2

)
+ i
(
3x2y − y3

)
,

and

z2 = (x + i y)2 = x2 − y2 + i · 2xy.

It follows immediately that

3x2y − y3 = Re
(−i z3

)
and xy = Re

(
− i

2
z2

)
,

so

u(x, y) = Re
(
−i z3 − i

2
z2

)
,

and we conclude that

v(x, y) = Im
(
−i z3 − i

2
z2

)
+ c = −Re

(
z2 +

1
2

z2

)
+ c = −x3 + 3xy2 − 1

2
x2 +

1
2

y2 + c,

and

f(z) = −i z3 − i

2
z2 + i c, c ∈ R.
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2) Alternatively we conclude from Cauchy-Riemann’s equations that

v(x, y) = c +
∫ {

−∂u

∂y
dx +

∂u

∂x
dy

}
= c +

∫ {− (3x2 − 3y2 + x
)
dx + (6xy + y)dy

}
= c +

∫ {−3x2dx + 3y2dx − x dx + 6xy dy + y dy
}

= c +
∫ {

d
(−x3

)
+
{
3y2dx+3x d

(
y2
)}− 1

2
d
(
x2
)
+

1
2

d
(
y2
)}

= c +
∫

d

(
−x3 + 3y2x − 1

2
x2 +

1
2

y2

)

= −x3 + 3y2x − 1
2

x2 +
1
2

y2 + c, c ∈ R,

and

f(z) = u + i v = 3x2y − y3 + xy + i

{
−x3 + 3y2x − 1

2
x2 +

1
2

x2 + c

}

= −i
{
x3+3x2(i y)+3x(i y)2+(i y)3

}− i

2
{
x2−y2+2i xy

}
+i c

= −i z3 − i

2
z2 + i c, c ∈ R.
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(d) Here,

Δu = 12x2 − 12y2 + 6xy − 12x2 + 12y2 − 6xy = 0,

and u(x, y) is harmonic.

1) Inspection. All terms of u(x, y) are of fourth degree in (x, y), so let us check z4. We get

z4 = (x + i y)4 = x4 + 4i x3y − 6x2y2 − 4i xy3 + y4

=
(
x4 − 6x2y2 + y4

)
+ 4i

(
x3y − xy3

)
,

so we conclude that

x4 − 6x2y2 + y4 = Re
(
z4
)

and x3y − xy3 = Re
(
− i

4
z4

)
,

hence

u(x, y) = Re
{(

1 − i

4

)
z4

}
,

and the harmonic conjugated functions are

v(x, y) = Im
{(

1 − i

4

)
z4

}
+ c = 4x3y − 4xy3 − 1

4
(
x4 − 6x2y2 + y4

)
+ c

= −1
4

x4 + 4x3y +
3
2

x2y − 4xy3 − 1
4

y4 + c, c ∈ R,

and finally,

f(z) =
(

1 − i

4

)
z4 + i c, c ∈ R.

2) Alternatively, if follows from Cauchy-Riemann’s equations that

v(x, y) = c +
∫ {

−∂u

∂y
dx +

∂u

∂x
dy

}

= c +
∫ {− (−12x2y + 4y3 + x3 − 3xy2

)
dx +

(
4x3 − 12xy2 + 3x2y − y3

)
dy
}

= c +
∫ {

12x2y dx − 4y3dx − x3dx + 3xy2dx
}

+4x3dy − 12xy2dy + 3x2y dy − y3dy
}

= c +
∫ {(

4y d
(
x3
)

+ 4x3dy
)− (4y3dx + 4x d

(
y3
))

−1
4

d
(
x2
)

+
3
2
(
y2d
(
x2
)

+ x2d
(
y2
))− 1

4
d
(
y4
)}

= c +
∫

d

(
4x3y − 4xy3 − 1

4
x4 +

3
2

x2y2 − 1
4

y4

)

= −1
4

x4 + 4x3y +
3
2

x2y2 − 4xy3 − 1
4

y4 + c, c ∈ R.

Finally,

f(z) = u + i v = x4 + 4i x3y − 6x2y2 − 4i xy3 + y4 − i

4
{
x4 + 4i x3y − 6x2y2 − 4i xy3 + y4

}
+ i c

= z4 − i

4
z4 + i c =

(
1 − i

4

)
z4 + i c, c ∈ R.
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Alternatively we get by Cauchy-Riemann’s equations that

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂u

∂x
− i

∂u

∂y

= 4x3 − 12xy2 + 3x2y − y3 − i
{−12x2y + 4y3 + x3 − 3xy2

}
= 4x3 − 12xy2 + 3x2y − y3 + 12i x2y − 4i y3 − i x3 + 3i xy2

= 4
{
x3 − 3xy2 + 3i x2y − i y3

}− i
{
x3 − 3xy2 + 3i x2y − i y3

}
= 4z3 − i z3 = (4 − i)z3.

By integration,

f(z) =
1
4

(4 − i) z4 + a.

Since u(x, y) = Re(f(z)) does not contain any constant term, a must be purely imaginary, so

f(z) =
(

1 − i

4

)
z4 + i c, c ∈ C.

Example 6.4 Find an harmonic conjugated v of each of the following harmonic functions, and then
find f(z) = u + i v:

(a) u(x, y) = x3 − 3xy2 + 1, (b) u(x, y) = ex sin y,

(c) u(x, y) = x ex cos y − y ex sin y.

(a1) It follows by an inspection that

z3 + 1 = x3 − 3xy2 + 1 + i
(
3x2y − y3

)
= u + i v,

so we may e.g. choose v(x, y) = 3x2y−y3, because we shall only indicate one harmonic conjugated.
This gives f(z) = z3 + 1.

(a2) Alternatively we use Cauchy-Riemann’s equations and line integrals:

v(x, y) =
∫ {

−∂u

∂y
dx +

∂u

∂x
dy

}
=
∫ {

6xy dx +
(
3x2 − 3y2

)
dy
}

=
∫ {(

6xy dx + 3x2dy
)− 3y2dy

}
=
∫

d
(
3x2y − y3

)
= 3x2y − y3,

so

f(z) = u + i v = x3 − 3xy2 + 1 + i
(
3x2y − y3

)
= z3 + 1.

(b1) It follows by inspection that

−i ez = −i ex(cos y + i sin y) = ex sin y − i ex cos y = u + i v,

hence

v(x, y) = −ex cos y and f(z) = −i ez.
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(b2) Alternatively we get as above by using Cauchy-Riemann’s equations,

v(x, y) =
∫ {

−∂u

∂y
dx +

∂u

∂x
dy

}
=
∫

{−ex cos y dx + ex sin y dx}

= −
∫

{cos y d (ex) + exd(cos y)} = −
∫

d (ex cos y) = −ex cos y,

and

f(z) = u + i v = ex sin y − i ex cos y = −i (ex cos y + i ex sin y) = −i ez.

(c1) It follows by inspection that

u(x, y) = x ex cos y − y ex sin y = Re {(x + iy) (ex cos y + i ex sin y)} = Re (z ez) ,

hence

v(x, y) = Im (z ez) = x ex sin y + y ex cos y,

and

f(z) = z ez.

(c2) Alternatively, by Cauchy-Riemann’s equations,

v(x, y) =
∫ {

−∂u

∂y
dx +

∂u

∂x
dy

}

=
∫

{(x ex sin y + ex sin y + y ex cos y) dx + (ex cos y + x ex cos y − y ex sin y) dy}

=
∫

{(1 + x)ex sin y dx + y ex cos y dx + x ex cos y dy + ex(1 · cos y − y · sin y)dy}

=
∫

{sin y d (x ex) + y cos y d (ex) + x exd(sin y) + exd(y cos y)}

=
∫

{d (x ex sin y) + d (exy cos y)} = x ex sin y + y ex cos y,

and finally,

f(z) = u + i v = x ex cos y − y ex sin y + i x ex sin y + i y ex cos y

= x ex{cos y + i sin y} + y ex{− sin y + i cos y} = x exei y + y ex
{
i cos y + i2 sin y

}
= x ez + y ex · i ei y = x ez + i y ez = (x + i y)ez = z ez.
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Example 6.5 In each of the following cases one shall find a corresponding analytic function f(z) =
u + i v, where either the real part u or the imaginary part v is given as an harmonic function:

(a) u(x, y) = x2 − y2 + 5x + y − y

x2 + y2
, z ∈ C \ {0},

(b) v(x, y) = ln
(
x2 + y2

)
+ x − 2y, z ∈ C \ (R− ∪ {0}) .

(a) It follows from

x2 − y2 = Re
(
z2
)
, 5x = Re(5z), y = Re(−i z), − y

x2 + y2
= Re

(
− i

z

)
,

that

u(x, y) = Re
(

z2 + 5z − i z − i

z

)
,

so we conclude that

f(z) = z2 + 5z − i z − i

z
+ i c, c ∈ R, z ∈ C \ {0}.
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(b) It follows from

Im(2iLog z) = ln
(
x2 + y2

)
, Im(−i z) = x, Im(−2z) = −2y,

that

v(x, y) = Im(2iLog z + i z − 2z),

and we conclude that

f(z) = 2iLog z + i z − 2z + c, c ∈ R, z ∈ C \ (R− ∪ {0}) .

Example 6.6 Prove that the function

ϕ(x, y) = 2 − x +
x

x2 + y2
, (x, y) �= (0, 0),

is harmonic.
Find the harmonic conjugated function ψ(x, y), for which ψ(1, 0) = 2, and then describe

f(z) = ϕ(x, y) + i ψ(x, y)

as a function of z.
Then put z = ew. By this change of variable one shall find Φ(u, v) = ϕ(x, y), and the value of Φ(u, v)
on the line u = 0.

(a1) It follows by inspection that

ϕ(x, y) = 2 − Re(z) + Re
(

1
z

)
= Re

(
2 − z +

1
z

)
.

Since 2+
1
z
−z is analytic for z �= 0, the function ϕ(x, y) is harmonic as the real part of an analytic

function.

(a2) Alternatively we check if the Cauchy-Riemann equations are fulfilled. We get by differenti-
ating

∂ϕ

∂x
= −1 +

y2 − x2

(x2 + y2)2
,

∂ϕ

∂y
= − 2xy

(x2 + y2)2
,

and

∂2ϕ

∂x2
= − 2x

(x2 + y2)2
− 2 · 2x

(
y2 − x2

)
(x2 + y2)3

= −2
x3 + 3xy2 − 2x3

(x2 + y2)3
= 2

x3 − 3xy2

(x2 + y2)3
,

∂2ϕ

∂y2
= − 2x

(x2 + y2)2
+ 2 · 2y · 2xy

(x2 + y2)3
= −2

x3 + xy2 − 4xy2

(x2 + y2)3
= −2

x3 − 3xy2

(x2 + y2)3
,

hence

Δϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0,

and it follows that ϕ(x, y) is harmonic.
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(b1) Using the expression of (a1) we get

ψ(x, y) = Im
(

2 − z +
1
z

)
+ c = −y − y

x2 + y2
+ c,

so we conclude from ψ(1, 0) = 2 that c = 2, hence

ψ(x, y) = −y − y

x2 + y2
+ 2.

(b2) Alternatively, by Cauchy-Riemann’s equations for (x, y) ∈ R
2 \ {(R− ∪ {0}) × {0}},

ψ(x, y) = 2 +
∫ (x,y)

(1,0)

{
−∂ϕ

∂y
dx +

∂ϕ

∂x
dy

}

= 2 +
∫ (x,y)

(1,0)

{
2xy

(x2 + y2)2
dx +

(
−1 +

y2 − x2

(x2 + y2)2

)
dx

}

= 2 +
∫ x

1

2ty
(t2 + y2)2

dt +
∫ y

0

{
−1 +

t1 − 1
(1 + t2)2

}
dt

= 2 −
[

y

t2 + y2

]x

t=1

− y +
∫ y

0

{
1

(1 + t2)2

}
dt.

Now∫
1

1 + t2
, dt =

t

1 + t2
+
∫

t · 2t
(1 + t2)2

dt =
t

t2 + 1
+ 2
∫

t2 + 1 − 1
(1 + t2)2

dt

=
t

1 + t2
+ 2
∫

1
1 + t2

dt − 2
∫

1
(1 + t2)2

dt,

so ∫ y

0

{
1

1 + t2
− 2

(1 + t2)2

}
dt =

[
− t

t2 + 1

]y

0

= − y

y2 + 1
,

and we get by insertion that

ψ(x, y) = 2 − y − y

y2 + 1
− y

x2 + y2
+

y

y2 + 1
= 2 − y − y

x2 + y2
.

Finally,

f(z) = ϕ(x, y) + i ψ(x, y) = 2 − x +
x

x2 + y2
+ 2i − i y − i y

x2 + y2
= 2 + 2 i − z +

1
z
.

(c) If z = ew, then

g(w) = f(z) = 2 + 2 i − ew + e−w = 2 + 2 i − 2 sinhw,

hence

Φ(u, v) = 2 − 2Re(sinh w) = 2 − 2 sinhu · cos v.

If u = 0, then

Φ(0, v) = 2.
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Example 6.7 Assume that f = u + i v is analytic in an open domain Ω. Prove that uv is harmonic
in Ω.
Then check, when the funkcion u2 is also harmonic.

Let u and v be any C2-functions. Then

∂

∂x
(uv) = v

∂u

∂x
+ u

∂v

∂x
,

and

∂2

∂x2
(uv) = v

∂2u

∂x2
+ u

∂2v

∂x2
+ 2

∂u

∂x
· ∂v

∂x
,

and analogously,

∂2

∂y2
(uv) = v

∂2u

∂y2
+ u

∂2v

∂y2
+ 2

∂u

∂y
· ∂v

∂y
.

Finally, by an addition,

(2) Δ(uv) = v · Δu + u · Δv + 2
{

∂u

∂x
· ∂v

∂x
+

∂u

∂y
· ∂v

∂y

}
.

We now assume that f = u + i v is analytic. Then Δu = 0 and Δv = 0, and we have by Cauchy-
Riemann’s equations that

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

and (2) is reduced to

Δ(uv) = 0 + 0 + 2
{

∂u

∂x

(
−∂u

∂y

)
+

∂u

∂y
· ∂u

∂x

}
= 0,

proving that uv is harmonic.

Then assume that u is harmonic, Δu = 0. If we choose v = u in (2), then

Δ
(
u2
)

= 0 + 0 + 2

{(
∂u

∂x

)2

+
(

∂u

∂y

)2
}

= 2 |grad u|2.

This expression is 0, if and only if grad u = 0, thus if and only if u is a constant.
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Example 6.8 Assume that ϕ(x, y) is of class C2. Prove that the family of curves

ϕ(x, y) = k, k ∈ R,

can be considered as a family of level curves for some harmonic function, if and only if

Δϕ

|grad ϕ|2

only depends on ϕ and not of any derivative of ϕ.
Hint: First prove that the wanted harmonic function must be of the form u = f(ϕ(x, y)).

It is obvious that if ϕ(x, y) = k defines a family of level curves for some harmonic function u, then
there exists some function f , such that

u(x, y) = f(k),

and we can write

u(x, y) = f(ϕ(x, y)).

Harmonic functions

 

It all starts at Boot Camp. It’s 48 hours 
that will stimulate your mind and 
enhance your career prospects. You’ll 
spend time with other students, top 
Accenture Consultants and special 
guests. An inspirational two days 

packed with intellectual challenges 
and activities designed to let you 
discover what it really means to be a 
high performer in business. We can’t 
tell you everything about Boot Camp, 
but expect a fast-paced, exhilarating 

and intense learning experience.  
It could be your toughest test yet, 
which is exactly what will make it 
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a 
difference every day. A place where you can develop your potential and grow professionally, working 
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while 
helping our global clients achieve high performance. If this is your idea of a typical working day, then 
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/364493/73


Download free books at BookBooN.com

Complex Functions Examples c-3

 

74  

Then we find

∂u

∂x
= f ′(ϕ)

∂ϕ

∂x
,

∂2u

∂x2
= f ′′(ϕ) ·

{
∂ϕ

∂x

}2

+ f ′(ϕ) · ∂2ϕ

∂x2
,

and analogously,

∂2u

∂y2
= f ′′(ϕ)

{
∂ϕ

∂y

}2

+ f ′(ϕ) · ∂2ϕ

∂y2
.

Since f ◦ ϕ = u is harmonic, we must have

0 = f ′′(ϕ)

{(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2
}

+ f ′(ϕ)
{

∂2ϕ

∂x2
+

∂2ϕ

∂y2

}
= f ′′(ϕ) · |gradϕ|2 + f ′(ϕ)Δϕ.

Thus, if grad ϕ �= 0, and f ′(ϕ) �= 0, then

Δϕ

|gradϕ|2 = −f ′′(ϕ)
f ′(ϕ)

,

and the claim follows.

On the other hand, if

Δϕ

|gradϕ|2

only depends on ϕ, then we define

f ′(ϕ) = exp
(
−
∫

Δϕ

|gradϕ|2 dϕ

)
,

so we conclude that

f ′′(ϕ) = − Δϕ

|gradϕ|2 · f ′(ϕ),

hence f ◦ ϕ = u is harmonic.

Example 6.9 Assume that u(x, y) is an harmonic function. Find all real functions f : R → R, for
which the composite function f(u(x, y)) is harmonic.

If u is a constant, then any f : R → R can be used.

If grad u �= 0, then we at least must assume that f is of class C2. We get under this assumption that

∂

∂x
(f ◦ u) = (f ′ ◦ u)

∂u

∂x
,

and

∂2

∂x2
(f ◦ u) = (f ′′ ◦ u)

(
∂u

∂x

)2

+ (f ′ ◦ u)
∂2u

∂x2
,
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and analogously,

∂2

∂y2
(f ◦ u) = (f ′ ◦ u)

(
∂u

∂y

)2

+ (f ′ ◦ u)
∂2u

∂y2
,

thus

Δ(f ◦ u) = (f ′′ ◦ u)

{(
∂u

∂x

)2

+
(

∂u

∂y

)2
}

+ (f ′ ◦ u)Δu = (f ′′ ◦ u)|gradu|2.

Since |gradu| �= 0, it follows that f ◦ u is harmonic, if and only if f ′′ ◦ u = 0, thus f ′′(t) = 0, and

f(t) = At + B, where A, B ∈ R.

If u is not a constant, then |gradu| �= 0 almost everywhere, so we conclude that f(t) = At+B almost
everywhere. Since f is continuous, we finally get

f(t) = At + B, t ∈ R.

Example 6.10 Find all real functions ϕ : R → R of class C2 of the real variable t, such that the
following functions u become harmonic.

(a) u(x, y) = ϕ(x), (b) u(x, y) = ϕ(ax + by), a, b ∈ R.

First variant. Since x = Re(z) and ax+by = Re{(a−ib)z} are harmonic, it follows from Example 6.9
that

ϕ(t) = At + B, A, B ∈ R.

Second variant. If one does not know the result of Example 6.9, then we proceed as follows:

(a) If u(x, y) = ϕ(x), then

∂2u

∂x2
= ϕ′′(x) and

∂2u

∂y2
= 0.

Hence we get the condition

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2
= ϕ′′(x),

thus

ϕ(t) = At + B, A, B ∈ R.

(b) If u(x, y) = ϕ(ax + by), then put t = ax + by. By differentiation,

∂2u

∂x2
= a2ϕ′′(t) and

∂2u

∂y2
= b2ϕ′′(t),
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hence by insertion into the Laplace equation,

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2
=
(
a2 + b2

)
ϕ′′(t).

If (a, b) = (0, 0), then u = constant (and thus harmonic) for every ϕ.
If (a, b) �= (0, 0), then ϕ′′(t) = 0, and hence

ϕ(t) = At + B, A, B ∈ R.

Remark 6.1 We see that (a) corresponds to (a, b) = (1, 0) in (b ). ♦

Example 6.11 Find all the real functions ϕ : R → R of class C2 in the real variable t such that the
following functions u become harmonic.

(a) u(x, y) = ϕ
(
x2 − y2

)
, (b) u(x, y) = ϕ(xy).

First variant. Since

x2 − y2 = Re
(
z2
)

and xy =
1
2

Im
(
z2
)

are harmonic and not constant, it follows from Example 6.9, that the only possibilities are

ϕ(t) = At + B, A, B ∈ R.

Second variant. Alternatively just compute:

(a) If u(x, y) = ϕ
(
x2 − y2

)
, then

∂u

∂x
= 2x · ϕ′ (x2 − y2

)
,

∂2u

∂x2
= 4x2ϕ′′ (x2 − y2

)
+ 2ϕ′ (x2 − y2

)
,

∂u

∂y
= −2y · ϕ′ (x2 − y2

)
,

∂2u

∂y2
= 4y2ϕ′′ (x2 − y2

)− 2ϕ′ (x2 − y2
)
,

hence

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2
= 4
(
x2 + y2

)
ϕ′′ (x2 − y2

)
= 0,

and we have derived the condition ϕ′′(t) = 0 for (x, y) �= (0, 0), hence

ϕ(t) = At + B, A, B ∈ R, t ∈ R,

because (x, y) �= (0, 0) does not give any real constraint on t ∈ R.

(b) If u(x, y) = ϕ(xy), then

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2
= y2ϕ′′(xy) + x2ϕ′′(xy) =

(
x2 + y2

)
ϕ′′(xy).

If we put t = xy, then ϕ′′(t) = 0, hence by two integrations,

ϕ(t) = At + B, A, B ∈ R.
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Example 6.12 Find all the real functions ϕ : R → R of class C2 in the real variable t, such that the
following functions u become harmonic.

(a) u(x, y) = ϕ
(y

x

)
, x �= 0, (b) u(x, y) = ϕ

(
x2 + y2

x

)
, x �= 0,

In this example none of the functions

y

x
,

x2 + y2

x
,

are harmonic, so we cannot use Example 6.9. One could, however, use Example 6.8 instead. This is
left to the reader as an exercise.
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(a) If u(x, y) = ϕ
(y

x

)
, then we get for x �= 0,

∂u

∂x
= − y

x2
ϕ′
(y

x

)
,

∂2u

∂x2
=

y2

x4
ϕ′′
(y

x

)
+

2y
x3

ϕ′
(y

x

)
,

∂u

∂y
=

1
x

ϕ′
(y

x

)
,

∂2u

∂y2
=

1
x2

ϕ′′
(y

x

)
,

and the constraint becomes

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2
=

x2 + y2

x4
ϕ′′
(y

x

)
+

2y
x2

ϕ′
(y

x

)
.

By a multiplication by x2 we get the equivalent equation{
1 +
(y

x

)2
}

ϕ′′
(y

x

)
+ 2

y

x
· ϕ′
(y

x

)
= 0.

Then put t =
y

x
in order to derive the differential equation

0 =
(
1 + t2

)
ϕ′′(t) + 2t ϕ′(t) =

d

dt

{(
1 + t2

)
ϕ′(t)

}
,

from which we get by integration,

(
1 + t2

)
ϕ′(t) = A, thus ϕ′(t) =

A

1 + t2
.

Then by another integration,

ϕ(t) = A · Arctan t + B, A, B ∈ R.

Hence, the corresponding harmonic functions are

u(x, y) = A · Arctan
(y

x

)
+ B, A, B ∈ R.

(b) If

u(x, y) = ϕ

(
x2 + y2

x

)
, x �= 0,

then it follows by differentiation,

∂u

∂x
=

2x2 − x2 − y2

x2
ϕ′
(

x2 + y2

x

)
=

x2 − y2

x2
ϕ′
(

x2 + y2

x

)
,

∂2u

∂x2
=

(
x2 − y2

x2

)2

ϕ′′
(

x2 + y2

x

)
+ 2

y2

x3
ϕ −

(
x2 + y2

x

)
,

∂u

∂y
= 2

y

x
ϕ′
(

x2 + y2

x

)
,

∂2u

∂y2
= 4

y2

x2
ϕ′′
(

x2 + y2

x

)
+ 2

1
x

ϕ′
(

x2 + y2

x

)
.
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Hence we obtain the condition

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2

=

(
x2−y2

)2+4x2y2

x4
ϕ′′
(

x2+y2

x

)
+2

x2+y2

x3
ϕ′
(

x2+y2

x

)

=
1
x2

{(
x2+y2

x

)2

ϕ′′
(

x2+y2

x

)
+2

x2+y2

x
ϕ′
(

x2+y2

x

)}
.

When this equation is multiplied by x2 (�= 0), and we put t =
x2 + y2

x
�= 0, then we get the

differential equation

0 = t2ϕ′′(t) + 2t ϕ′(t) =
d

dt

{
t2ϕ′(t)

}
,

hence by an integration,

t2ϕ′(t) = −A, thus ϕ′(t) = −A

t2
.

Finally, by another integration,

ϕ(t) =
A

t
+ B, A, B ∈ R.

The corresponding harmonic functions are not given by

u(x, y) = A · x

x2 + y2
+ B, A, B ∈ R,

where we according to the proof must assume that x �= 0. However, by making a small check it is
easy to see that it is enough to require that (x, y) �= (0, 0).

Remark 6.2 We could have solved the problem easier, if we had noted that

x2 + y2

x
=
(

x

x2 + y2

)−1

, for x �= 0,

and then applied that

x

x2 + y2
, (x, y) �= (0, 0),

is harmonic. Then it follows from Example 6.9 that all the corresponding harmonic functions are
given by ϕ(t) = At + B, thus

u(x, y) = A
x

x2 + y2
+ B, A, B ∈ R, (x, y) �= (0, 0).

Notice that this latently contains a rather sophisticated argument, so I have not classified it as an
alternative solution. (It is too difficult.) ♦
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Example 6.13 Find all the real functions ϕ : R+ → R of class C2 in the real variable t, for which
the following functions u are harmonic.

(a) u(x, y) = ϕ
(
x2 + y2

)
, (x, y) �= (0, 0),

(b) u(x, y) = ϕ
(
x +

√
x2 + y2

)
, (x, y) �= (0, 0).

It is not possible either here to apply Example 6.9. It is, however, possible to use Example 6.8 instead.
This is left to the reader.

(a) If u(x, y) = ϕ
(
x2 + y2

)
, x2 + y2 �= 0, is harmonic, then

∂u

∂x
= 2xϕ′ (x2 + y2

)
,

∂2u

∂x2
= 4x2ϕ′′ (x2 + y2

)
+ 2ϕ′ (x2 + y2

)
,

∂u

∂y
= 2y ϕ′ (x2 + y2

)
,

∂2u

∂y2
= 4y2ϕ′′ (x2 + y2

)
+ 2ϕ′ (x2 + y2

)
,

and the condition becomes

Δu =
∂2u

∂x2
+

∂2u

∂y2
= 4
(
x2 + y2

)
ϕ′′ (x2 + y2

)
+ 4ϕ′ (x2 + y2

)
= 0.

If we put t = x2 + y2 (> 0), this equation if reduced to

0 = t ϕ′′(t) + ϕ′(t) =
d

dt
{t ϕ′(t)} , t > 0,

hence by an integration,

t · ϕ′(t) = A, t > 0, thus ϕ′(t) =
A

t
, t > 0.

We get by another integration,

ϕ(t) = A · ln t + B, A, B ∈ R, t > 0.

The corresponding harmonic functions are then given by

u(x, y) = A · ln (x2 + y2
)

+ B, A, B ∈ R, (x, y) �= (0, 0).

(b) If

u(x, y) = ϕ
(
x +

√
x2 + y2

)
, (x, y) �= (0, 0),
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then x +
√

x2 + y2 = t > 0, and we get

∂u

∂x
=

(
1 +

x√
x2 + y2

)
ϕ′
(
x +

√
x2 + y2

)
,

∂2u

∂x2
=

(
1 +

x√
x2 + y2

)2

ϕ′′
(
x +

√
x2 + y2

)

+

⎛
⎜⎝ 1√

x2 + y2
− x2(√

x2 + y2
)3

⎞
⎟⎠ϕ′

(
x +

√
x2 + y2

)

=

(
x +

√
x2 + y2

)2

x2 + y2
ϕ′′
(
x +

√
x2 + y2

)
+

y2

(x2 + y2)
√

x2 + y2
ϕ′
(
x +

√
x2 + y2

)
,

∂u

∂y
=

y√
x2 + y2

ϕ′
(
x +

√
x2 + y2

)
,

∂2u

∂y2
=

y2

x2 + y2
ϕ′′
(
x +

√
x2 + y2

)

+

⎛
⎜⎝ 1√

x2 + y2
− y2(√

x2 + y2
)3

⎞
⎟⎠ϕ′

(
x +

√
x2 + y2

)

=
y2

x2 + y2
ϕ′′
(
x +

√
x2 + y2

)
+

x2

(x2 + y2)
√

x2 + y2
ϕ′
(
x +

√
x2 + y2

)
.
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We end up with the condition

0 = Δu =
∂2u

∂x2
+

∂2u

∂y2

=
x2 + x2 + y2 + 2x

√
x2 + y2 + y2

x2 + y2
ϕ′′
(
x +

√
x2 + y2

)

+
x2 + y2(√
x2 + y2

)3 ϕ′
(
x +

√
x2 + y2

)

= 2
x2 + y2 + x

√
x2 + y2(√

x2 + y2
)2 ϕ′′

(
x +

√
x2 + y2

)
+

1√
x2 + y2

ϕ′
(
x +

√
x2 + y2

)

=
1√

x2 + y2

{
2
(
x+
√

x2+y2
)
+ϕ′

(
x+
√

x2+y2
)}

.

Now put t = x +
√

x2 + y2 > 0. Then we multiply by
√

x2 + y2 �= 0 in order to obtain the
following equivalent differential equation of first order in ϕ′(t),

2t ϕ′′(t) + ϕ′(t) = 0.

The complete solution is

ϕ′(t) =
Ã√
t
,

hence by an integration and another arbitrary constant A,

ϕ(t) = A
√

t + B, A, B ∈ R, t ∈ R+.

The corresponding harmonic functions are

u(x, y) = A

√
x +

√
x2 + y2 + B, A, B ∈ R, (x, y) �= (0, 0).

Example 6.14 Prove the existence of, and find the analytic functions f(z) = 
 eiϕ, when 
 is given
by

(a) 
 =
(
x2 + y2

)
ex, (b) 
 = exp

(
r2 cos 2θ

)
.

Here, z = x + i y = r eiθ.

(a1) It follows by inspection that


 = r2ex = |z|2 |ez| =
∣∣z2ez

∣∣ ,
hence

f(z) = c z2ez, where |c| = 1.
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(a2) Alternatively we use Cauchy-Riemann’s equations in polar coordinates. First note that we
have in polar coordinates,

f(z) = 
 eiϕ = 
 cos ϕ + i 
 sinϕ,

hence by separation into real and imaginary part,

u = r2er cos θ · cos ϕ(r, θ), v = r2er cos θ · sin ϕ(r, θ).

Thus

∂u

∂r
= 2r er cos θ cos ϕ + r2 cos θ er cos θ · cos ϕ − r2er cos θ sin ϕ · ∂ϕ

∂r

= r er cos θ

{
cos ϕ · (2 + r cos θ) − r sin ϕ · ∂ϕ

∂r

}
,

1
r

∂v

∂θ
=

1
r

{
r2 · r(− sin θ)e

r cos θ sinϕ + r2er cos θ cos ϕ · ∂ϕ

∂θ

}

= r er cos θ cos ϕ · ∂ϕ

∂θ
− r2 sin θ er cos θ sin ϕ

= r er cos θ

{
cos ϕ · ∂ϕ

∂θ
− r sinϕ · sin θ

}
.

We shall now use the following one of Cauchy-Riemann’s equations,

∂u

∂r
=

1
r

∂v

∂θ
.

It follows from the above that

(3) (cos ϕ, sin ϕ) ·
(

2+r cos θ,−r
∂ϕ

∂r

)
= (cos ϕ, sin ϕ) ·

(
∂ϕ

∂θ
,−r sin θ

)
,

which is fulfilled when

(4)
∂ϕ

∂θ
= 2 + r cos θ,

∂ϕ

∂r
= sin θ,

hence for

ϕ(r, θ) = 2θ + r · sin θ + k, k ∈ R.

Then by insertion,

f(z) = 
 ei ϕ =
(
x2 + y2

)
exei(2θ+r sin θ+k) = r2e2iθ · exei yeik =

(
r ei θ

)2
ex+i yeik

= eik · z2ez,

which of course is an analytic function.
When we use the other one of Cauchy-Riemann’s equations in polar coordinates we conclude that
(4) is the only relevant solution of (3)
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(b1) It follows by inspection that


 = exp
(
Re
(
z2
))

=
∣∣exp

(
z2
)∣∣ ,

hence

f(z == C · exp
(
z2
)
, where |C| = 1.

(b2) Alternatively we use Cauchy-Riemann’s equations in polar coordinates. We first see that

u = exp
(
r2 cos 2θ

)
cos ϕ(r, θ) and v = exp

(
r2 cos 2θ

)
sin ϕ(r, θ),

hence by differentiation,

∂u

∂r
= 2r cos 2θ · exp

(
r2 cos 2θ

)
cos ϕ − exp

(
r2 cos 2θ

)
sin ϕ · ∂ϕ

∂r

= exp
(
r2 cos 2θ

)
(cos ϕ, sin ϕ) ·

(
2r cos 2θ,−∂ϕ

∂r

)
,

1
r

∂v

∂θ
=

1
r

{
−2r2 sin 2θ · sin ϕ + cos ϕ · ∂ϕ

∂θ

}
exp
(
r2 cos 2θ

)
= exp

(
r2 cos 2θ

) · (cos ϕ, sin ϕ) ·
(

1
r

∂ϕ

∂θ
,−2r sin 2θ

)
.

Then we apply the following one of Cauchy-Riemann’s equations,

∂u

∂r
=

1
r

∂v

∂θ
.

Note, however, that in the first place the implication is going in the wrong direction. However, by
using the other one of Cauchy-Riemann’s equations it actually follows that it is legal to use this
formula. We get

1
r

∂ϕ

∂θ
= 2r cos 2θ and

∂ϕ

∂r
= 2r sin 2θ,

hence

∂ϕ

∂θ
= 2r2 cos 2θ and

∂ϕ

∂r
= 2r sin 2θ,

so

ϕ(r, θ) = r2 sin 2θ + k, k ∈ R.

Finally, by insertion

f(z) = 
 ei ϕ = exp
(
r2 cos 2θ

)
exp
(
i
(
r2 sin 2θ + k

))
= eik exp

(
r2e2iθ

)
= eik exp

(
z2
)
,

which of course is analytic.
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Example 6.15 Prove the existence of and find the analytic functions f(z) = 
 ei ϕ, when ϕ is given
by

(a) ϕ = xy, (b) ϕ = θ + r sin θ.

Here, z = x + i y = r ei θ.

(a1) It follows by inspection that

ei ϕ = ei xy = exp
(

1
2

(2i xy)
)

,

so we guess on

f(z) = C · exp
(

1
2

z2

)
, C ∈ R+,

which is easily seen to be a solution.

 Harmonic functions
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(a2) Alternatively we apply Cauchy-Riemann’s equations to find 
. We first identify

u = 
 · cos(xy) and v = 
 · sin(xy),

and then get by a differentiation,

∂u

∂x
=

∂


∂x
cos(xy) − y · 
 sin(xy) = (cos(xy), sin(xy)) ·

(
∂


∂x
,−y 


)
,

∂v

∂y
= x · 
 cos(xy) +

∂


∂y
sin(xy) = (cos(xy), sin(xy)) ·

(
x 
,

∂


∂y

)
.

Thus

∂


∂x
= x · 
 og

∂


∂y
= −u 
,

and hence

1



∂


∂x
= x og

1



∂


∂y
= −y,

so

ln 
 =
1
2

x2 + C1(y) = −1
2

y2 + C2(x),

from which

ln 
 =
1
2
(
x2 − y2

)
+ k, eller 
 = C · exp

(
1
2
(
x2 − y2

))
.

Finally, by insertion,

f(z) = C · exp
(

1
2
(
x2 − y2

))
ei xy = C · exp

(
1
2

z2

)
, C ∈ R+,

which clearly is analytic.

(b1) If ϕ = θ + r · sin θ, then

u = 
(r, θ) cos(θ + r sin θ), v = 
(r, θ) sin(θ + r sin θ),

hence

∂u

∂r
=

∂


∂r
cos ϕ − 
 sinϕ · sin θ = (cos ϕ, sin ϕ) ·

(
∂


∂r
,−
 sin θ

)
,

1
r

∂v

∂θ
=

1
r

∂


∂θ
sinϕ +

1
r


 cos ϕ · {1 + r cos θ} = (cos ϕ, sin ϕ) ·
(




{
1
r

+ cos θ

}
,
1
r

∂


∂θ

)
.

Since
∂u

dr
=

1
r

∂v

∂θ
, a solution must satisfy the following equation

1
r

∂


∂θ
= −
 sin θ, and

∂


∂r
=

1
2


 · {1 + r cos θ},
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thus by a rearrangement,

1



∂


∂θ
= −r sin θ, and

1



∂


∂r
=

1
r

+ cos θ.

By analyzing the second one of Cauchy-Riemann’s equations we conclude that this is the only
possibility.

Then by an integration,

ln 
 = r · cos θ + C1(r) = r · cos θ + ln r + C2(θ),

and we conclude that

ln 
 = ln r + r · cos θ + k, k ∈ R,

which we write as


 = C r er cos θ, C ∈ R+.

Finally, by insertion,

f(z) = 
 ei ϕ = C · r er cos θei(θ+r sin θ)

= C r eiθex+i y = C z ez, C ∈ R+,

which clearly is analytic.

(b2) Alternatively it follows by inspection that

ei ϕ = eiθ+i r sin θ = ei θei y,

so our guess is

f(z) = C · r eiθ · ex · ei y = C z ez, C ∈ R+.
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Example 6.16 (a) Prove that the function

ϕ(x, y) = x ln
√

x2 + y2 − y Arctan
y

x
, x ∈ R+, y ∈ R,

is harmonic.

(b) Denote by ψ(x, y) the harmonic conjugated function of ϕ(x, y), for which ψ(1, 0) = 0, and denote
by f(z) = ϕ(x, y) + i ψ(x, y) the corresponding analytic function. Find

f ′(z) =
∂ϕ

∂x
+ i

∂ψ

∂x

as a function of z. Then express f(z) in the variable z.

Inspection. First note that we have for x > 0,

Log z = ln |z| + i θ = ln
√

x2 + y2 + iArctan
y

x
.

Then it follows by inspection,

ϕ(x, y) = x · ln
√

x2 + y2 − y · Arctan
y

x

= Re
(
(x + i y)

(
ln
√

x2 + y2 + iArctan
y

x

))
= Re(z Log z).

The function z Log z is in the open right half plane the product of two analytic functions, so it is
also analytic, and ϕ(x, y) is harmonic because it is the real part of an analytic function.

Since

Im(z Log z) = x · θ + y ln |z| = x · Arctan
y

x
+ y ln

√
x2 + y2

is an harmonic conjugated of ϕ, and since this function is 0 for (x, y) = (1, 0), we conclude that

ψ(x, y) = x · Arctan
y

x
+ y
√

x2 + y2, x ∈ R+, y ∈ R,

and

f(z) = ϕ(x, y) + i ψ(x, y) = z Log z, Re(z) > 0.

Finally, by a differentiation,

f ′(z) = 1 + Log z, Re(z) > 0.

Standard method.

(a) Since ϕ is composed of infinitely often differentiable functions in the given domain, ϕ is also
infinitely often differentiable. Then write

ϕ(x, y) = x · ln
√

x2 + y2 − y · Arctan
y

x
=

1
2

x · ln (x2 + y2
)− y · Arctan

y

x
,
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and we get by a differentiation that

∂ϕ

∂x
=

1
2

ln
(
x2 + y2

)
+

1
2

x · 2x
x2 + y2

− y · 1

1 +
(y

x

)2 ·
(
− y

x2

)

=
1
2

ln
(
x2 + y2

)
+

x2

x2 + y2
+

y2

x2 + y2
=

1
2

ln
(
x2 + y2

)
+ 1,

∂2ϕ

∂x2
=

x

x2 + y2
,

∂ϕ

∂y
=

1
2

x · 2y
x2 + y2

− Arctan
y

x
− y · 1

1 +
(y

x

)2 · 1
x

=
xy

x2 + y2
− Arctan

y

x
− yx

x2 + y2
= − Arctan

y

x
,

∂2ϕ

∂y2
= − 1

1 +
(y

x

)2 · 1
x

= − x

x2 + y2
.
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It follows that

Δϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
=

x

x2 + y2
− x

x2 + y2
= 0,

and we have proved that ϕ is harmonic.

Remark 6.3 One is never requested to compute the function ψ. If we do it, we get the following
variant:
We choose the path of integration as the broken line

(1, 0) −→ (x, 0) −→ (x, y).

Then by taking some simple primitives,

ψ(x, y) =
∫ {

−∂ϕ

∂y
dx +

∂ϕ

∂x
dy

}
+ constant

=
∫ {

+Arctan
y

x
dx +

{
1
2

ln
(
x2 + y2

)
+ 1
}

dy

}
+ constant

= ψ(1, 0) +
∫ x

1

Arctan
(

0
t

)
dt +

∫ y

0

{
1
2

ln
(
x2 + t2

)
+ 1
}

dt

= y +
∫ y

0

1
2

ln
(
x2 + t2

)
dt

= y +
[
1
2

t · ln (x2 + t2
)− ∫ 1

2
t · 2t

x2 + t2
dt

]y

0

= y +
1
2

y · ln (x2 + y2
)− ∫ y

0

t2 +
(
x2 − x2

)
x2 + t2

dt

= y +
1
2

y · ln (x2 + y2
)− ∫ y

0

{
1 − x2

x2 + t2

}
dt

= y +
1
2

y · ln (x2 + y2
)− y +

∫ y

0

1

1 +
(

t

x

)2 dt

=
1
2

y ln
(
x2 + y2

)
+ x · Arctan

y

x

= y ln
√

x2 + y2 + x · Arctan
y

x
.

Thus

f(z) = ϕ(x, y) + i ψ(x, y)

= x ln
√

x2 + y2 − y Arctan
y

x
+ i y ln

√
x2 + y2 + i xArctan

y

x

= (x + iy) ln
√

x2 + y2 + i(x + i y)Arctan
y

x

= (x + iy)
(
ln
√

x2 + y2 + iArctan
y

x

)
= z Log z,

and hence

f ′(z) = 1 + Log x. ♦
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(b) By Cauchy-Riemann’s equations we get

f ′(z) =
∂ϕ

∂x
+ i

∂ψ

∂x
=

∂ϕ

∂x
− i

∂ϕ

∂y
=

1
2

ln
(
x2 + y2

)
+ 1 + iArctan

y

x

= 1 +
{

ln
√

x2 + y2 + iArctan
y

x

}
= 1 + Log z.

In particular, f ′(x) = 1 + lnx on the positive real half axis, so we get for x ∈ R+ that

f(x) =
∫ x

1

{1 + ln t} dt =
[
t + t · ln t −

∫
t

t
dt

]x

1

= [t · ln t]x1 = x · lnx.

Since z · Log z is an analytic function in the right half plane, which is equal to x · lnx on the
positive real half axis, we conclude by the uniqueness theorem of analytic functions that

f(z) = z · Log z, for Re(z) > 0.

Example 6.17 Prove that the function

ϕ(x, y) = Arccot
(

x − y

x + y

)
, x + y > 0,

is harmonic.
Find the harmonic conjugated function ψ(x, y) of ϕ(x, y), for which ψ(1, 0) = 0, and then write
f(z) = ϕ(x, y) + i ψ(x, y) as a function in z, e.g. by first finding f ′(z).
Consider f(z) as a complex potential in the domain x + y > 0. sketch the streamlines and the
equipotential curves corresponding to f(z) in this domain.

Inspection. Note that we shall not follow the questions of the example strictly by this method, if
only we answer all of them. First analyze Arccot.
Put w = u + i v, v > 0. Let Arg w denote the principal argument of w. Then the function

Arg w = Arccot
u

v
(= Im(Log w)),

is harmonic in the two variables u and v. Since

ϕ(x, y) = Arccot
(

x − y

x + y

)
,

is is very tempting to choose

u = x − y og v = x + y,

i.e.

w = x − y + i(x + y) = x + i y + i(x + i y) = (1 + i)z.

Now, w = (1 + i)z is analytic (and conformal) in z, and since Arg w is harmonic in u and v, it
follows that

ϕ(x, y) = Arccot
(

x − y

x + y

)
= Arg{(1 + i)z}, x + y > 0,
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Figure 14: The open domain Ω lies above the oblique line y = −x.

is harmonic.

Then note that the domain x + y > 0 is given in polar coordinates by

r > 0, −π

4
< θ <

3π
4

.

Then the domain can shortly be described by

−π

4
< Arg z <

3π
4

,

because the principalargument of any complex number �= 0 lies in ] − π, π]. Since the principal
argument only fix a direction, i.e. a half line from 0, and since

1 + i =
√

2 exp
(
i
π

4

)
,

it follows that

ϕ(x, y) = Arg((1 + i)z) = Arg
(√

2 exp
(
i
π

4

)
z
)

= Arg
((

exp
(
i
π

4

)
· z
))

=
π

4
+ Arg z,

because multiplication by exp
(
i
π

4

)
corresponds to a rotation of

π

4
.

Remark 6.4 We see that
π

4
+ Arg z ∈ ]0.π[, i.e. the image of the principal argument, when z lies

in the domain given by x + y > 0. ♦

We conclude from

Log w = ln |w| + i Arg w, w �= 0,

that

−i Log w = Arg w − i ln |w|,

 Harmonic functions
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thus for x + y > 0,

ϕ(x, y) =
π

4
+ Arg z = Re

(π

4
− i Log z + i · C

)
, C ∈ R.

Hence, all harmonic conjugated functions of ϕ(x, y) are given by

Ψ(x, y) = Im
(π

4
− i Log z + i · C

)
= − ln |z| + C, C ∈ R.

The searched harmonic conjugated function ψ(x, y), x + y > 0, shall also fulfil the condition
ψ(1, 0) = 0, hence by insertion,r

ψ(1, 0) = − ln 1 + C = C = 0,

thus C = 0, and we get

ψ(x, y) = − ln |z| = − ln
√

x2 + y2 = −1
2

ln
(
x2 + y2

)
.

Finally, it follows from C = 0 that

f(z) = ϕ(x, y) + i ψ(x, y) =
π

4
− i Log z, x + y > 0.
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In other forms of computations one may get the equivalent expressions

f(z) = −i Log((1 + i)z) + i
1
2

ln 2 = −i Log
(
exp
(
i
π

4

)
z
)

.

–2

–1

1

2

–2 –1 1 2

Figure 15: The streamlines are the half circles, and the equipotential curves are the half lines.

The streamlines are given by ψ(x, y) = − ln |z| = k, thus

|z| = e−k, x + y > 0.

Hence, the streamlines are a family of half circles in the domain x + y > 0 of centrum atz = 0.

The equipotential curves are given by

ϕ(x, y) =
π

4
+ Arg z = k,

hence

Arg = k − π

4
.

These curves form a family of half lines from z = 0 in the domain given by x + y > 0.

Standard method. The function

ϕ(x, y) = Arccot
(

x − y

x + y

)

belongs to C∞ in the domain given by x + y > 0. Then by a differentiation,

∂ϕ

∂x
= − 1

1 +
(

x − y

x + y

)2 · 1 · (x + y) − 1 · (x − y)
(x + y)2

= − x + y − x + y

(x + y)2 + (x − y)2
= − y

x2 + y2

∂ϕ

∂y
= − 1

1 +
(

x − y

x + y

)2 · (−1)(x + y) − 1 · (x − y)
(x + y)2

= − −x − y − x + y

(x + y)2 + (x − y)2
=

x

x2 + y2
,
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and

Δϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
= +

2xy

(x2 + y2)2
− 2xy

(x2 + y2)2
= 0.

Thus, ϕ fulfils the Laplace equation in the given domain, so ϕ is harmonic.

Write f(z) = ϕ(x, y) + i ψ(x, y). Then by Cauchy-Riemann’s equations,

f ′(z) =
∂ϕ

∂x
+ i

∂ψ

∂x
=

∂ϕ

∂x
− i

∂ϕ

∂y
= − y

x2 + y2
− i

x

x2 + y2

= −i · x − i y

x2 + y2
= −i

z

z z
= − i

z
.

The principal logarithm Log z is a primitive of
1
z

in the domain under consideration, so

f(z) = −i Log z + C, x + y > 0.

If z = 1 = 1 + i · 0 then

C = f(1) = ϕ(1, 0) + i · ψ(1, 0) = arccot
(

1 − 0
1 + 0

)
+ i · 0 =

π

4
,

hence

f(z) = −i Log z +
π

4
=

π

4
+ Arg z − i ln |z|.

It follows immediately from the latter expression that

ψ(x, y) = − ln |z| = − ln
√

x2 + y2 = − ln r.

Finally, the streamlines and the equipotential curves are found as above.

Variant. One may also find the harmonic conjugated function ψ int he following way. Since ψ(1, 0) =
0, we get by line integrals,

ψ(x, y) =
∫ (x,y)

(1,0)

{
−∂ϕ

∂y
dx +

∂ϕ

∂x
dy

}
=
∫ (x,y)

(1,0)

{
− x

x2 + y2
dx − y

x2 + y2
dy

}

= −1
2

∫ (x,y)

(1,0)

1
x2 + y2

d
(
x2 + y2

)
= −1

2
ln
(
x2 + y2

)
= − ln

√
x2 + y2.
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Example 6.18 Prove that the function

ϕ(x, y) = x sin x coshy − y cos x sinh y, (x, y) ∈ R
2,

is harmonic. Then find the harmonic conjugated function ψ(x, y) of ϕ(x, y), for which ψ(π, 0) = 0,
and finally

f(z) = ϕ(x, y) + i ψ(x, y)

as a function of z.

First method. It follows by inspection from

z = x + i y and sin z = sinx · cosh y + i cos x · sinh y,

that

ϕ(x, y) = x · sin x · cosh y − y · cos x · sinh y = Re(z · sin z).

Now, z ·sin z is analytic in C, so ϕ(x, y) is harmonic in R
2, because it is the real part of an analytic

function.

All harmonic conjugated functions ψ(x, y) are given by

ψ(x, y) = Im(z · sin z) + C = x · cos x · sinh y + y · sinx · cosh y + C,

where C ∈ R is an arbitrary constant. It follows from ψ(π, 0) = 0 that C = 0, hence

ψ(x, y) = x · cos x · sinh y + y · sin x · cosh y.

Finally, we conclude from the above that

f(z) = ϕ(x, y) + i ψ(x, y) = z · sin z.

Second method. Alternatively we have ϕ ∈ C∞ (
R

2
)
. Then by differentiation,

∂ϕ

∂x
= sinx · cosh y + x · cos x · cosh y + y · sinx · sinh y,

∂2ϕ

∂x2
= 2 cos x · cosh y − x · sinx · cosh y + y · cos x · sinh y,

and

∂ϕ

∂y
= x · sinx · sinh y − cos x · sinh y − y · cos x · cosh y,

∂2ϕ

∂y2
= x · sinx · cosh y − 2 cos x · cosh y − y · cos x · sinh y,

hence

Δϕ =
∂2ϕ

∂x2
+

∂ϕ

∂y2
= 0.
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Thus we have proved that ϕ is harmonic in R
2.

The harmonic conjugated function ψ(x, y) of ϕ(x, y), where ψ(π, 0) = 0, is found by means of
Cauchy-Riemann’s equations and a line integral:

ψ(x, y) =
∫

(π,0)

{
∂ψ

∂x
dx +

∂ψ

∂y
dy

}
=
∫

(π,0)

{
−∂ϕ

∂y
dx +

∂ϕ

∂x
dy

}

=
∫

(π,0)

(−x sinx sinh y + cos x sinh y + y cos x cosh y) dx

+(sinx cosh y + x cos x cosh y + y sinx sinh y) dy.

The value of this line integral can e.g. be found by an integration along a broken line:

(π, 0) −→ (x, 0) −→ (x, y).

Then

ψ(x, y) =
∫ y

0

0 dt +
∫ y

0

(sinx cosh t+xcos x cosh t+sinx t · sinh t) dt

= sinx

∫ y

0

(1 · cosh t + t · sinh t) dt + x · cos x · sinh y

= sinx · y · cosh y + x · cos x · sinh y,
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or alternatively by playing a little with the well-known formula

d(u · v) = v du + u dv,

so we get

ψ(x, y) =
∫

(π,0)

(sinh y · {x(− sin x) + 1 · cos x}dx + y cosh y d(sin x)

+ sinx · {1 · cosh y + y · sinh y}dy + x cos x d(sinh y))

=
∫

(π,0)

{sinh y d(x cos x) + y cosh y d(sin x)

+x cos x d(sinh y) + sinx d(y cosh y)}
=

∫
(π,0)

d{x cos x sinh y + y sinx cosh y}

= x cos x sinh y + y sin x cosh y.

Finally,

f(z) = ϕ(x, y) + i ψ(x, y)
= x sin x cosh y − y cos x sinh y + i y sin x cosh y + i x cos x sinh y

= (x + i y) sin x cosh y + i(x + i y) cos x sinh y

= (x + i y){sin x cosh y + i cos x sinh y}
= z · sin z.

Example 6.19 1) Prove that the function

ϕ(x, y) = Arctan
(

y

1 + x

)

is harmonic in the domain

Ω = {z ∈ C | Re(z) > −1}.

2) Find harmonic conjugated function ψ(x, y) of ϕ(x, y) in Ω, where ψ(0, 0) = 0.

3) Find the analytic function

f(z) = ϕ(x, y) + i ψ(x, y), z = x + i y ∈ Ω,

as a known function in z.

First method. Inspection.

1) If w = u + i v, where u > 0, then

Log w = Log(u + i v) =
1
2

ln
(
u2 + v2

)
+ iArctan

( v

u

)
,
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hence

Arctan
( v

u

)
= Im(Log w).

Then by a comparison,
v

u
=

y

1 + x
,

and it is tempting to put u = 1 + x and v = y. Choosing these, we see that u > 0 for z ∈ Ω
and

Arctan
(

y

+ x

)
= Im(Log(1 + z)) = Re(−iLog(1 + z)), z ∈ Ω.

Now, −iLog(1 + z) is analytic in Ω, so

Arctan
(

y

1 + x

)

is harmonic in Ω (considered as a subset of R
2).

2) All harmonic conjugated functions ψ in Ω are given by

ψ(x, y) = c + Im(−iLog(1 + z)) = x − Re(Log w)

= c − 1
2

ln
(
u2 + v2

)
= c − 1

2
ln
(
(1 + x)2 + y2

)
,

where c ∈ R is a real constant. Then it follows from ψ(0, 0) = 0 that

c = ψ(0, 0) +
1
2

ln
(
(1 + 0)2 + 02

)
= 0 + 0 = 0,

hence

ψ(x, y) = −1
2

ln
(
1 + x)2 + y2

)
.

3) Finally, we obtain from the above,

f(z) = ϕ(x, y) + i ψ(x, y) = Re(−iLog(1 + z)) + i Im(−iLog(1 + z))
= −iLog(1 + z).

Second method. Definition of an harmonic function.

1) Clearly,

ϕ(x, y) = Arctan
(

y

1 + x

)

belongs to C∞(Ω). Then by differentiation,

∂ϕ

∂x
=

1

1 +
(

y

1 + x

)2 ·
(
− y

(1 + x)2

)
= − y

(1 + x)2 + y2
,

∂ϕ

∂y
=

1

1 +
(

y

1 + x

)2 · 1
1 + x

=
1 + x

(1 + x)2 + y2
,
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so

∂2ϕ

∂x2
=

2(1 + x)y
((1 + x)2 + y2)2

og
∂2ϕ

∂y2
= − 2y(1 + x)

((1 + x)2 + y2)2
,

and it follows that Δϕ = 0 in Ω, so ϕ is harmonic in Ω.

2) The harmonic conjugated ψ(x, y) is defined by the line integral

ψ(x, y) = ψ(0, 0) +
∫ (x,y)

(0,0)

{
−∂ϕ

∂y
dx +

∂ϕ

∂x
dy

}

=
∫ (x,y)

(0,0)

{
− 1 + x

(1 + x)2 + y2
dx − y

(1 + x)2 + y2
dy

}

= −1
2

∫ (x,y)

(0,0)

d
{
(1 + x)2 + y2

}
(1 + x)2 + y2

= −1
2

ln
{
(1 + x)2 + y2

}
.
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3) A direct computation gives

f(z) = ϕ(x, y) + i ψ(x, y)

= Arctan
(

y

x + 1

)
− i

1
2

ln
(
(1 + x)2 + y2

)
= −i {ln |1 + x + i y| + iArg(1 + x + i y)}
= −i {ln |1 + z| + iArg(1 + z)}
= −iLog(1 + z).

Alternatively we have for z ∈ Ω,

f ′(z) =
∂ϕ

∂x
− i

∂ϕ

∂y
= − y

(1 + x)2 + y2
− i

1 + x

(1 + x)2 + y2

= −i
1 + x − i y

(1 + x + i y)(1 + x − i y)
= −i

1
1 + x + i y

= −i · 1
1 + z

,

hence by finding a primitive,

f(z) = c − iLog(1 + z),

where

c = f(0) + iLog(1 + 0) = ϕ(0, 0) + i ψ(0, 0) + i · 0 = 0,

hence

f(z) = −iLog(1 + z), z ∈ Ω.

Example 6.20 Assume that the function f is analytic in the open domain Ω � C. Prove that at any
point z = x + i y ∈ Ω we have the equation

Δ
(|f(z)|2) = 4 |f ′(z)|2 ,

where Δ denotes the Laplace differential operator.

By putting f = u + i v, we get

f ′(z) =
∂u

∂x
+ i

∂v

∂x
,
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and hence by just computing, using that Δu = 0 and Δv = 0, i.e. that u and v are harmonic:

Δ
(|f(z)|2) = Δ

(
u2 + v2

)
=

∂2

∂x2

(
u2 + v2

)
+

∂2

∂y2

(
u2 + v2

)
,

=
∂

∂x

{
2u

∂u

∂x

}
+

∂

∂y

{
2u

∂u

∂y

}
+

∂

∂x

{
2v

∂v

∂x

}
+

∂

∂y

{
2v

∂v

∂y

}

= 2
{

∂u

∂x

}2

+ 2u
∂2u

∂x2
+ 2u

∂2u

∂y2
+ 2
{

∂u

∂y

}2

+ 2
{

∂v

∂x

}2

+ 2
{

∂v

∂y

}2

+ 2v
{

∂2v

∂x2
+

∂2v

∂y2

}

= 2

({
∂u

∂x

}2

+
{

∂u

∂y

}2

+
{

∂v

∂x

}2

+
{

∂v

∂y

}2
)

+ 2u Δu + 2v Δv

= 2

({
∂u

∂x

}2

+
{
−∂v

∂x

}2

+
{

∂v

∂x

}2

+
{

∂u

∂x

}2
)

+ 0 + 0

= 4

({
∂u

∂x

}2

+
{

∂v

∂x

}2
)

= 4
∣∣∣∣∂u

∂x
+ i

∂v

∂x

∣∣∣∣
2

= 4 |f ′(z)|2 .

Note that we have also applied Cauchy-Riemann’s equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Example 6.21 In two-dimensional elasticity problems one often has to consider the biharmonic equa-
tion

ΔΔΦ =
∂4Φ
∂x4

+ 2
∂4Φ

∂x2∂y2
+

∂4Φ
∂y4

= 0.

Assume that Ω is an open simply connected domain. Prove that all solutions of the biharmonic
equation ΔΔΦ = 0 are given by

Φ = Re {z f(z) + g(z)} ,

where the functions f(z) and g(z) are any analytic function in Omega.

Clearly, any harmonic function is also biharmonic.
Since Re g(z) is harmonic for every analytic function g(z) on Ω, we shall only prove that Re {z f(z)}
is biharmonic for every analytic function f(z) on Ω in order to prove that all solutions are given as
above.

If we write f = u + i v, then

Φ1 := Re {z f(z)} = Re {(x − i y)(u + i v)} = xy + yv.
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A test gives

ΔΔΦ = Δ
{

∂2

∂x2
(xu + yv) +

∂2

∂y2
(xy + yv)

}

= Δ
{

∂

∂x

(
u + x

∂u

∂x

)
+ y

∂2v

∂x2
+ x

∂2u

∂y2
+

∂

∂y

(
v + y

∂v

∂y

)}

= Δ
{

2
∂u

∂x
+ x

∂2u

∂x2
+ y

∂2v

∂x2
+ x

∂2u

∂y2
+ 2

∂v

∂y
+ y

∂2v

∂y2

}

= 2Δ
{

∂u

∂x

}
+ 2Δ

{
∂v

∂y

}
+ Δ{xΔu + y Δv}

= 2
∂

∂x
{Δu} + 2

∂

∂y
{Δv} + Δ{x · 0 + y · 0} = 0.

Conversely, assume that Φ is biharmonic in Ω. Then ΔΦ is harmonic, and since Ω is assumed to be
simply connected, there must exist an analytic function h(z) on Ω, such that

ΔΦ = Re h(z).

Again because Ω is simply connected, we can find a primitive f of
h

4
i Ω, thus f ′ =

h

4
. Then we get

by a similar computation as above that

ΔRe {z f(z)} = Re h = ΔΦ,

thus

Δ {Φ − Re {z f(z)}} = 0,

proving that Φ− z f(z) is harmonic in Ω. Then we can find an analytic function f(z) on Ω, such that

Φ − Re {z f(z)} = Re g(z),

and the result follows by a rearrangement.

Example 6.22 Let Ω = B(0, 1) denote the open unit disc, and assume that h(z) is continuous on the
boundary |z| = 1. Solve the boundary value problem⎧⎨
⎩

Δu = 0, for (x, y) ∈ Ω,

u(x, y) = h(x, y), for x2 + y2 = 1.

We introduce the function ϕ : [0, 2π] → R or C by

ϕ(t) := h
(
eit
)

= h(cos t, sin t), t ∈ [0, 2π].

Then ϕ(t) is continuous, and ϕ(0) = ϕ(2π). Then ϕ has a Fourier series expansion

ϕ(t) ∼ 1
2

a0 +
+∞∑
n=1

{an cos nt + bn sinnt} ,
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where

an =
1
π

∫ 2π

0

ϕ(t) cos nt dt and bn =
1
π

∫ 2π

0

ϕ(t) sinnt dt.

The solution is given by Poisson’s integral formula,

u
(
r eiθ

)
=

1
2π

1 − r2

1 + r2 − 2r cos(θ − t)
ϕ(t) dt, r ∈ [0, 1[.

It is well-known, or easily proved, that

1 − r2

1 + r2 − 2r cos(θ − t)
= 1 + 2

+∞∑
n=1

rn cos(n(θ − t)).

This series is uniformly convergent, if 0 ≤ r < 1 is kept fixed, so we can interchange the summation
and the integration,

u
(
r eiθ

)
=

1
2π

∫ 2π

0

ϕ(t) dt +
+∞∑
n=1

rn · 1
π

∫ 2π

0

ϕ(t) cos(nθ − nt) dt.

www.1calendar.dk 
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Here,

1
2π

∫ 2π

0

ϕ(t) dt =
1
2

a0,

and

1
π

∫ 2π

0

ϕ(t) cos(nθ − nt) dt =
1
π

∫ 2π

0

ϕ(t) cos nt dt · cos nθ +
1
π

∫ 2π

0

ϕ(t) sin nt dt · sin nθ

= an cos nθ + bn sinnθ,

so by insertion we get the very useful solution formula

u
(
r eiθ

)
=

1
2

a0 +
+∞∑
n=1

rn {an cos nθ + bn sinnθ} ,

in which we shall only perform a Fourier series expansion of the boundary value h
(
eiθ
)

and then add
the factor rn, 0 ≤ r < 1, to the n-th term of the Fourier series.

Example 6.23 Let u : R × R → R be given by

u(x, y) = exp
(
x2 − y2

)
cos(2xy) + ex sin y.

1) Prove that u is an harmonic function.

2) Find v, such that u and v are harmonic conjugated, and such that v(0, 0) = 0.

3) Write the function u(x, y) + i v(x, y) as a function of z, where z = x + iy.

It follows by inspection from z2 = x2 − y2 + 2ixy that

u1(x, y) = exp
(
Re
{
z2
})

cos
(
Im
{
z2
})

= Re
{
exp
(
Re
{
z2
}

+ i Im
{
z2
})}

= Re
{
exp
(
z2
)}

.

Analogously,

u2(x, y) = ex sin y = Im {ez} = Re {−i ez} .

Then it follows that:

1) Since

u(x, y) = u1(x, y) + u2(x, y) = Re
{
exp
(
z2
)− i ez

}
is the real part of an analytic function, we have that u(x, y) is harmonic.

2) Since

v1(x, y) = Im
{
exp
(
z2
)− i ez

}
= exp

(
x2 − y2

)
sin(2xy) − ex cos y

is an harmonic conjugated of u(x, y) where v1(0, 0) = −1, the wanted harmonic conjugated is given
by

v(x, y) = exp
(
x2 − y2

)
sin(2xy) − ex cos y + 1 = Im

{
exp
(
z2
)− i ez + i

}
.
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3) The wanted function is

f(z) = exp
(
z2
)− i ez + i.

Alternatively, apply the standard method.

1) We get by differentiation,

∂u

∂x
= 2x ex2−y2

cos(2xy) − 2y ex2−y2
sin(2xy) + ex sin y,

∂u

∂y
= −2y ex2−y2

cos(2xy) − 2x ex2−y2
sin(2xy) + ex cos y,

and

∂2u

∂x2
+

∂2u

∂y2
= 2 ex2−y2

cos(2xy) + 4x2ex2−y2
cos(2xy)

−4xy ex2−y2
sin(2xy) − 4xy ex2−y2

sin(2xy)

−4y2ex2−y2
cos(2xy) + ex sin y

−2 ex2−y2
cos(2xy) + 4y2ex2−y2

cos(2xy)

+4xy ex2−y2
sin(2xy)

+4xy ex2−y2
sin(2xy) + 4xy ex2−y2

sin(2xy)

−4x2ex2−y2
cos(2xy) − ex sin y

= 0,

so u(x, y) fulfils the Laplace differential equation, thus u(x, y) is harmonic.

2) It follows from Cauchy-Riemann’s equations that

∂v

dx
= −∂u

∂y
= 2y ex2−y2

cos(2xy) + 2x ex2−y2
sin(2xy) − ex cos y,

∂v

∂y
=

∂u

∂x
= 2x ex2−y2

cos(2xy) − 2y ex2−y2
sin(2xy) + ex sin y.

Thus we get the differential form

dv =
∂v

∂x
dx +

∂v

∂y
dy

= ex2−y2
cos(2xy) · 2y dx + ex2−y2

sin(2xy) · 2x dx

− cos y · exdx + ex2−y2
cos(2xy) · 2x dy

−ex2−y2
sin(2xy) · 2y dy + ex sin y dy

= ex2−y2
cos(2xy) d(2xy) + ex2−y2

sin(2xy) d
(
x2 − y2

)− cos y d (ex) − ex d(cos y)

= ex2−y2
d{sin(2xy)} + sin(2xy) d

(
ex2−y2

)
− d (ex cos y)

= d
{

ex2−y2
(2xy) − ex cos y

}
,
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hence by an integration,

v(x, y) = ex2−y2
sin(2xy) − ex cos y + c.

Now,v(0, 0) = 0 = −1 + c, so c = 1, and the harmonic conjugated function satisfying v(0, 0) = 0 is
given by

v(x, y) = ex2−y2
sin(2xy) − ex cos y + 1.

3) Finally.

f(z) = u(x, y) + i v(x, y)

= ex2−y2
cos(2xy) + ex sin y + i ex2−y2

sin(2xy) − i ex cos y + i

= ex2−y2{cos(2xy) + i sin(2xy)} − i · ex{cos y + i sin y} + i

= ex2−y2
e2ixy − i · exeiy + i

= exp
(
x2 − y2 + 2ixy

)− i · exp(x + iy) + i

= exp
(
z2
)− i ez + i.
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Example 6.24 Let A be a domain in C, and let f : A → C denote an analytic function. Put
u = Re(f) and v = Im(f). Prove that the product u · v is an harmonic function on A.

We assume that f = u + iv is analytic, so u and v are harmonic and satisfy Cauchy-Riemann’s
equations,

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Then

∂2

∂x2
(u · v) +

∂2

∂y2
(u · v) =

∂

∂x

{
∂u

∂x
· v + u · ∂v

∂x

}
+

∂

∂y

{
∂u

∂y
· v + u · ∂v

∂y

}

=
∂

∂x

{
∂v

∂y
· v − u · ∂u

∂y

}
+

∂

∂y

{
−∂v

∂x
· v + u · ∂u

∂x

}

=
1
2

∂

∂x

{
∂v2

∂y
− ∂u2

∂y

}
+

1
2

∂

∂y

{
−∂v2

∂x
+

∂u2

∂x

}

=
1
2

{
∂2v2

∂x∂y
− ∂2u2

∂x∂y
− ∂2v2

∂x∂y
+

∂2u2

∂x∂y

}
= 0,

and it follows that u · v is harmonic.

Example 6.25 Let u : R
2 → R be given by

u(x, y) = ex (x cos y − y sin y).

1) Prove that u is an harmonic function.

2) Find all harmonic conjugated functions v : R
2 → R, for which u + iv is analytic, and write all

these functions u + iv as a function in z, where z = x + iy.

1) It follows by inspection that

u(x, y) = ex {x cos y − y sin y} = Re
{
(x + iy)ex+iy

}
= Re {z ez} .

Since z ez is analytic, u(x, y) is harmonic.

2) An harmonic conjugated function is given by

v(x, y) = Im {z ez} = ex {x sin y + y cos y}.

Then all harmonic conjugated functions are given by

v(x, y) = c + ex {x sin y + y cos y},

and furthermore,

f(z) = u(x, y) + i v(x, y) = z ez + ic, c ∈ R.
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Alternatively:

1) The function

u(x, y) = ex {x cos y − y sin y}

has the derivatives

∂u

∂x
= ex {x cos y − y sin y + cos y},

∂2u

∂x2
= ex {x cos y − y sin y + 2 cos y},

∂v

∂y
= ex {−x sin y − y cos y − sin y},

∂2v

∂y2
= ex {−x cos y + y sin y − 2 cos y}.

Since

∂2u

∂x2
+

∂2u

∂y2
= 0,

it follows that u(x, y) is an harmonic function.

2) Assume that v(x, y) is an harmonic conjugated function. Then by Cauchy-Riemann’s equations,

dv =
∂v

∂x
dx +

∂v

∂y
dy = −∂u

∂y
dx +

∂u

∂x
dy

= ex{x sin y + y cos y + sin y} dx + ex{x cos y − y sin y + cos y} dy

= sin y d (x ex) + y cos y d (ex) + x ex d(sin y) + ex d(y cos y)
= d (x ex sin y + y cos y · ex) ,

and we get by an integration

v(x, y) = c + ex(x sin y + y cos y).

Finally,

f(z) = u(x, y) + i v(x, y)
= ex{x cos y − y sin y} + i ex{x sin y + y cos y} + ic

= x ex{cos y + i sin y} + i y ex{cos y + i sin y} + ic

= (x + iy)ex+iy + ic = z ez + ic.
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Example 6.26 Let u : R
2 → R be given by

u(x, y) = x4 + y4 − 6x2y2 + x − y + 1.

1) Prove that u is an harmonic function.

2) Find all the harmonic conjugated functions v : R
2 → R, for which u + iv is analytic, and write

each of these functions u + iv as a function in z alone, where z = x + iy.

1) Since u(x, y) is a sum of polynomials of fourth degree and of first degree, it will be quite reasonable
to guess on a linear combination of the real parts and the imaginary parts of z4 and z. It follows
by a computation that

z4 = (x + iy)4 = x4 − 6x2y2 + y4 + i
{
4x3y − 4xy3

}
.

When we compare this with the expression of u(x, y) it follows that

u(x, y) = x4 + y4 − 6x2y2 + x − y + 1 = Re
(
z4
)

+ Re(z) + Re(iz) = Re
{
z4 + (1 + i)z

}
.

Since z4+(1+i)z is analytic in C, and u(x, y) is the real part, we conclude that u(x, y) is harmonic.
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2) All harmonic conjugated functions are then

v(x, y) = Im
{
z4 + (1 + i)z

}
+ c = 4x3y − 4xy3 + x + y + c,

where c ∈ R is an arbitrary constant.

We have already mentioned that

f(z) = u(x, y) + i v(x, y) = z4 + (1 + i)z + ic, c ∈ R.

Alternatively we apply the standard method.

1) We get by differentiation,

∂u

∂x
= 4x3 − 12xy2 + 1,

∂u

∂y
= 4y3 − 12x2y − 1,

∂2u

∂x2
= 12x2 − 12y2,

∂2u

∂y2
= 12y2 − 12x2.

It follows that

∂2u

∂x2
+

∂2u

∂y2
= 0,

which implies that u(x, y) is harmonic.

2) Then by Cauchy-Riemann’s equations, at

dv =
∂v

∂x
dx +

∂v

∂y
dy = −∂u

∂y
dx +

∂u

∂x
dy =

{−4y3 + 12x2y + 1
}

dx +
{
4x3 − 12xy2 + 1

}
dy

=
{−4y3dx − 4x d

(
y3
)}

+
{
4y d

(
x3
)

+ 4x3dy
}

+ dx + dy = d
{−4xy3 + 4x3y + x + y

}
.

Then an integration gives that all harmonic conjugated functions are given by

v(x, y) = 4x3y − 4xy3 + x + y + c, c ∈ R.

Finally,

f(z) = u(x, y) + i v(x, y) = x4 + 4x3(iy) + 6x2(iy)2 + 4x(iy)3 + (iy)4 + (x + iy) + i(x + iy) + ic

= (x + iy)4 + (1 + i)(x + iy) + ic = z4 + (1 + i)z + ic, c ∈ R.


